Neuropsychiatric disorders that result from stress exposure are highly associated with central inflammation. Our previous work established that females selectively exhibit heightened proinflammatory cytokine production within the noradrenergic locus coeruleus (LC) along with a hypervigilant behavioral phenotype in response to witnessing social stress, and ablation of microglia using pharmacological techniques prevents this behavioral response. These studies were designed to further investigate the impact of stress-induced neuroimmune signaling on the long-term behavioral and neuronal consequences of social stress exposure in females using chemogenetics.
View Article and Find Full Text PDFWhile over 95% of the population has reported experiencing extreme stress or trauma, females of reproductive age develop stress-induced neuropsychiatric disorders at twice the rate of males. This suggests that ovarian hormones may facilitate neural processes that increase stress susceptibility and underlie the heightened rates of these disorders, like depression and anxiety, that result from stress exposure in females. However, there is contradicting evidence in the literature regarding estrogen's role in stress-related behavioral outcomes.
View Article and Find Full Text PDFBackground: Women are at increased risk for psychosocial stress-related anxiety disorders, yet mechanisms regulating this risk are unknown. Psychosocial stressors activate microglia, and the resulting neuroimmune responses that females exhibit heightened sensitivity to may serve as an etiological factor in their elevated risk. However, studies examining the role of microglia during stress in females are lacking.
View Article and Find Full Text PDF