Developing thin, freestanding electrodes that work simultaneously as a current collector and electroactive material is pivotal to integrating portable and wearable chemical sensors. Herein, we have synthesized graphene/Prussian blue (PB) electrodes for hydrogen peroxide detection (HO) using a two-step method. First, an reduced graphene oxide/PAni/FeO freestanding film is prepared using a doctor blade technique, followed by the electrochemical deposition of PB nanoparticles over the films.
View Article and Find Full Text PDFX-ray photoelectron spectroscopy (XPS) and reflection electron energy loss spectroscopy (REELS) were employed to characterize the electronic properties of Prussian blue (PB) and its analogs when electrodeposited over metal-decorated carbon nanotubes (CNTs). Through an investigation of the influence of carbon nanotubes (CNTs) and preparation conditions on the electronic structure, valuable insights were obtained regarding their effects on electrochemical properties. XPS analysis enabled the probing of the chemical composition and oxidation states of the film materials, unveiling synthesis-driven variations in their electronic properties.
View Article and Find Full Text PDFBatteries employing transition-metal sulfides enable high-charge storage capacities, but polysulfide shuttling and volume expansion cause structural disintegration and early capacity fading. The design of heterostructures combining metal sulfides and carbon with an optimized morphology can effectively address these issues. Our work introduces dopamine-coated copper Prussian blue (CuPB) analogue as a template to prepare nanostructured mixed copper-iron sulfide electrodes.
View Article and Find Full Text PDFDue to their various applications, metal oxides are of high interest for fundamental research and commercial usage. Per applications as catalysts or electrochemical devices, the tailored design of metal oxides featuring a high specific surface area and additional functionalities is of the utmost importance for the performance of the resulting materials. We report a new method for preparing free-standing films consisting of hierarchically porous metal oxides (titanium and niobium based) by combining emulsion polymerization and shear-induced monodisperse particle self-assembly in the presence of sol-gel precursors.
View Article and Find Full Text PDFThis work presents the synthesis of MoO/MoS core/shell nanoparticles within a carbon nanotube network and their detailed electron microscopy investigation in up to three dimensions. The triple-hybrid core/shell material was prepared by atomic layer deposition of molybdenum oxide onto carbon nanotube networks, followed by annealing in a sulfur-containing gas atmosphere. High-resolution transmission electron microscopy together with electron diffraction, supported by chemical analysis energy dispersive X-ray and electron energy loss spectroscopy, gave proof of a MoO core covered by few layers of a MoS shell within an entangled network of carbon nanotubes.
View Article and Find Full Text PDFMAX phases are etched using an ionic liquid-water mixture to produce titanium carbide MXenes. The process avoids the use of any acid. Hydrolysis of the fluorine-containing ionic liquid leads to the selective removal of Al, while the ionic liquid is intercalated in-between the transition metal carbide layers.
View Article and Find Full Text PDFTechnologies for the effective and energy efficient removal of salt from saline media for advanced water remediation are in high demand. Capacitive deionization using carbon electrodes is limited to highly diluted salt water. Our work demonstrates the high desalination performance of the silver/silver chloride conversion reaction by a chloride ion rocking-chair desalination mechanism.
View Article and Find Full Text PDFMost of the dye-sensitized solar cells (DSSCs) developed so far use organic electrolytes and water-sensible sensitizers. The search for aqueous DSSCs, a promising technology for solar-energy conversion, implies finding materials that are stable in aqueous solution. In this study, Prussian blue (PB) was utilized as an innovative sensitizer in a photoanode for DSSCs and a novel synthetic approach to a carbon nanotubes/TiO /PB nanocomposite thin film was developed.
View Article and Find Full Text PDFMulti-walled carbon nanotubes (MWCNTs) filled with different species of cobalt (metallic cobalt, cobalt oxide) were synthesized by a chemical vapor deposition method through cobaltocene pyrolysis. A systematic study was performed to correlate different experimental conditions with the structure and characteristics of the obtained material. Thin films of Co-filled CNTs were deposited over conductive substrates through a liquid-liquid interfacial method and were used for cobalt hexacyanoferrate (CoHCFe) electrodeposition by an innovative route in which the Co species encapsulated in the CNTs were employed as reactants.
View Article and Find Full Text PDFThis work reports the preparation, characterization and application as both electrochromic materials and electrochemical sensors of novel materials: carbon nanotubes/ruthenium purple nanocomposites. Using an innovative route based on a heterogeneous electrochemical reaction involving iron oxide species encapsulated within the cavities of the carbon nanotubes, the nanocomposite materials were obtained as transparent thin films deposited over transparent electrodes. Several experimental parameters related to the nanocomposite synthesis were evaluated and related to the characteristics of the obtained materials, such as morphology and stability.
View Article and Find Full Text PDF