Publications by authors named "Samantha Hornby"

Introduction: An uncontrollably rising core body temperature (T C ) is an indicator of an impending exertional heat illness. However, measuring T C invasively in field settings is challenging. By contrast, wearable sensors combined with machine-learning algorithms can continuously monitor T C nonintrusively.

View Article and Find Full Text PDF

Objective: Observational studies on the use of commercially available wearable devices for infection detection lack the rigor of controlled clinical studies, where time of exposure and onset of infection are exactly known. Towards that end, we carried out a feasibility study using a commercial smartwatch for monitoring heart rate, skin temperature, and body acceleration on subjects as they underwent a controlled human malaria infection (CHMI) challenge.

Methods: Ten subjects underwent CHMI and were asked to wear the smartwatch for at least 12 hours/day from 2 weeks pre-challenge to 4 weeks post-challenge.

View Article and Find Full Text PDF

Objective: This study aimed at assessing the risks associated with human exposure to heat-stress conditions by predicting organ- and tissue-level heat-stress responses under different exertional activities, environmental conditions, and clothing.

Methods: In this study, we developed an anatomically detailed three-dimensional thermoregulatory finite element model of a 50th percentile U.S.

View Article and Find Full Text PDF

In a subcutaneous implant rat model, Collagraft alone (n=8), Collagraft plus isologous bone marrow (n=8), and marrow alone (n=8) were evaluated. Twelve rats were euthanized at 11 days and 12 at 21 days. Explants were evaluated histologically for evidence of bone formation, and osteogenic activity was determined by an assay for alkaline phosphatase.

View Article and Find Full Text PDF