Publications by authors named "Samantha Henderson"

Acute myeloid leukemia (AML) is an aggressive blood cancer that stems from the rapid expansion of immature leukemic blasts in the bone marrow. Mutations in epigenetic factors represent the largest category of genetic drivers of AML. The chromatin assembly factor CHAF1B is a master epigenetic regulator of transcription associated with self-renewal and the undifferentiated state of AML blasts.

View Article and Find Full Text PDF

Background: Pediatric hearing instrument fitting is optimally performed with individually obtained real-ear-to-coupler difference (RECD) measurements. If these measurements cannot be obtained, predicted values based on age are used. Recent evidence obtained from children aged 3-11 years suggests that head circumference (HC) may be a viable alternative or addition to age for use in RECD prediction.

View Article and Find Full Text PDF

Background: Liquid biopsy for plasma circulating tumor DNA (ctDNA) next-generation sequencing (NGS) is commercially available and increasingly adopted in clinical practice despite a paucity of prospective data to support its use.

Methods: Patients with advanced lung cancers who had no known oncogenic driver or developed resistance to current targeted therapy (n = 210) underwent plasma NGS, targeting 21 genes. A subset of patients had concurrent tissue NGS testing using a 468-gene panel (n = 106).

View Article and Find Full Text PDF

Aeromonas strains isolated from sediments upstream and downstream of a water resource recovery facility (WRRF) over a two-year time period were tested for susceptibility to 13 antibiotics. Incidence of resistance to antibiotics, antibiotic resistance phenotypes, and diversity (based on resistance phenotypes) were compared in the two populations. At the beginning of the study, the upstream and downstream Aeromonas populations were different for incidence of antibiotic resistance (p < 0.

View Article and Find Full Text PDF

Over the last 20 years, it has emerged that many molecular chaperones and protein-folding catalysts are secreted from cells and function, somewhat in the manner of cytokines, as pleiotropic signals for a variety of cells, with much attention being focused on the macrophage. During the last decade, it has become clear that macrophages respond to bacterial, protozoal, parasitic and host signals to generate phenotypically distinct states of activation. These activation states have been termed 'classical' and 'alternative' and represent not a simple bifurcation in response to external signals but a range of cellular phenotypes.

View Article and Find Full Text PDF