Epigenetic modifications, characterized by changes in gene expression without altering the DNA sequence, play a crucial role in the development and progression of cancer by significantly influencing gene activity and cellular function. This insight has led to the development of a novel class of therapeutic agents, known as epigenetic drugs. These drugs, including histone deacetylase inhibitors, histone acetyltransferase inhibitors, histone methyltransferase inhibitors, and DNA methyltransferase inhibitors, aim to modulate gene expression to curb cancer growth by uniquely altering the epigenetic landscape of cancer cells.
View Article and Find Full Text PDFCardiovascular diseases are the leading cause of death worldwide, with heart failure being a complex condition that affects millions of individuals. Single-nucleus RNA sequencing has recently emerged as a powerful tool for unraveling the molecular mechanisms behind cardiovascular diseases. This cutting-edge technology enables the identification of molecular signatures, intracellular networks, and spatial relationships among cardiac cells, including cardiomyocytes, mast cells, lymphocytes, macrophages, lymphatic endothelial cells, endocardial cells, endothelial cells, epicardial cells, adipocytes, fibroblasts, neuronal cells, pericytes, and vascular smooth muscle cells.
View Article and Find Full Text PDF