Approximately 90% of cancer-related deaths result from cancer metastasis. In prostate and breast cancers, bone is the most common site of cancer cell dissemination. Key steps in the metastatic cascade are promoted through upregulation of critical cell signaling pathways in neoplastic cells.
View Article and Find Full Text PDFA challenge in cancer research is the lack of physiologically responsive models that enable tracking of cancer cells in tissue-like environments. A model that enables real-time investigation of cancer cell migration, fate, and function during angiogenesis does not exist. Current models, such as 2D or 3D culturing, can contain multiple cell types, but they do not incorporate the complexity of intact microvascular networks.
View Article and Find Full Text PDFThe presence of macrophages within breast tumors correlates with metastatic potential. These tumor-associated macrophages often take on a pro-tumorigenic (M2-like) phenotype resulting in the secretion of growth factors and proteases, including the lysosomal protease cathepsin L. Since cathepsin L also is frequently secreted by breast cancer cells and contributes to tumor invasion, metastasis, and angiogenesis, we hypothesized that secretion of cathepsin L by both tumor-associated macrophages and neoplastic cells would facilitate the metastatic phenotype.
View Article and Find Full Text PDFBreast cancer in the United States is the second most commonly diagnosed cancer in women. About 1 in 8 women will develop invasive breast cancer over the course of her lifetime and breast cancer remains the second leading cause of cancer-related death. In pursuit of novel therapeutic strategies, researchers have examined the tumor microenvironment as a potential anti-cancer target.
View Article and Find Full Text PDFEpstein-Barr virus (EBV)-associated carcinomas, such as nasopharyngeal carcinoma (NPC), exhibit an undifferentiated and metastatic phenotype. To determine viral contributions involved in the invasive phenotype of EBV-associated carcinomas, EBV-infected human telomerase-immortalized normal oral keratinocytes (NOK) were investigated. EBV-infected NOK were previously shown to undergo epigenetic reprogramming involving CpG island hypermethylation and delayed responsiveness to differentiation.
View Article and Find Full Text PDFBackground: Tumor invasion through a basement membrane is one of the earliest steps in metastasis, and growth factors, such as Epidermal Growth Factor (EGF) and Hepatocyte Growth Factor (HGF), stimulate this process in a majority of solid tumors. Basement membrane breakdown is one of the hallmarks of invasion; therefore, tumor cells secrete a variety of proteases to aid in this process, including lysosomal proteases. Previous studies demonstrated that peripheral lysosome distribution coincides with the release of lysosomal cathepsins.
View Article and Find Full Text PDFThe fungal vacuole is a large acidified organelle that performs a variety of cellular functions. At least a sub-set of these functions are crucial for pathogenic species of fungi, such as Candida albicans, to survive within and invade mammalian tissue as mutants with severe defects in vacuolar biogenesis are avirulent. We therefore sought to identify chemical probes that disrupt the normal function and/or integrity of the fungal vacuole to provide tools for the functional analysis of this organelle as well as potential experimental therapeutics.
View Article and Find Full Text PDFTumor cell invasion through the extracellular matrix is facilitated by the secretion of lysosome-associated proteases. As a common mechanism for secretion, lysosomes must first traffic to the cell periphery (anterograde trafficking), consistent with invasive cells often containing lysosomes closer to the plasma membrane compared to non-invasive cells. Epithelial to mesenchymal transition (EMT) is a transcriptionally driven program that promotes an invasive phenotype, and Zeb1 is one transcription factor that activates the mesenchymal gene expression program.
View Article and Find Full Text PDFCancer is a multistep process that requires cells to respond appropriately to the tumor microenvironment, both in early proliferative stages and in later invasive disease. Arl8b is a lysosome localized Arf-like GTPase that controls the spatial distribution of lysosomes via recruitment of kinesin motors. Common features of the tumor microenvironment such as acidic extracellular pH and various growth factors stimulate lysosome trafficking to the cell periphery (anterograde), which is critical for tumor invasion by facilitating the release of lysosomal proteases to promote matrix remodeling.
View Article and Find Full Text PDFThe hepatocyte growth factor (HGF)/mesenchymal-epithelial transition factor (c-Met) signaling axis has gained considerable attention as an attractive molecular target for therapeutic blockade of cancer. Inspired by the chemical structure of S (-)-oleocanthal, a natural secoiridoid from extra-virgin olive oil with documented anticancer activity against c-Met-dependent malignancies, the research presented herein reports on the discovery of the novel olive-derived homovanillyl sinapate (HVS) as a promising c-Met inhibitor. HVS was distinguished for its remarkable potency against wild-type c-Met and its oncogenic variant in cell-free assays and confirmed by in silico docking studies.
View Article and Find Full Text PDFLysosome trafficking plays a significant role in tumor invasion, a key event for the development of metastasis. Previous studies from our laboratory have demonstrated that the anterograde (outward) movement of lysosomes to the cell surface in response to certain tumor microenvironment stimulus, such as hepatocyte growth factor (HGF) or acidic extracellular pH (pHe), increases cathepsin B secretion and tumor cell invasion. Anterograde lysosome trafficking depends on sodium-proton exchanger activity and can be reversed by blocking these ion pumps with Troglitazone or EIPA.
View Article and Find Full Text PDFCommon features of the solid tumor microenvironment, such as acidic extracellular pH and growth factors, are known to induce the redistribution of lysosomes from a perinuclear region to a position near the plasma membrane. Lysosome/plasma membrane juxtaposition facilitates invasion by allowing for the release of lysosomal proteases, including cathepsin B, which contribute to matrix degradation. In this study we identified the sirtuin 1/sirtuin 2 (SIRT1/2) inhibitor cambinol acts as a drug that inhibits lysosome redistribution and tumor invasion.
View Article and Find Full Text PDFInvasion and subsequent metastasis is the major cause of death from most cancers including prostate cancer. Herein we report on the potential tumor suppressive properties of Rab7, a GTPase that regulates trafficking of lysosomes. The movement of lysosomes to the cell surface in response to environmental cues increases the secretion of proteinases and cell invasion.
View Article and Find Full Text PDF