Building data-driven models is an effective strategy for information extraction from empirical data. Adapting model parameters specifically to data with a best fitting approach encodes the relevant information into a mathematical model. Subsequently, an optimal control framework extracts the most efficient targets to steer the model into desired changes via external stimuli.
View Article and Find Full Text PDFSince ancient times aging has also been regarded as a disease, and humankind has always strived to extend the natural lifespan. Analyzing the genes involved in aging and disease allows for finding important indicators and biological markers for pathologies and possible therapeutic targets. An example of the use of omics technologies is the research regarding aging and the rare and fatal premature aging syndrome progeria (Hutchinson-Gilford progeria syndrome, HGPS).
View Article and Find Full Text PDFEpithelial-to-mesenchymal transition (EMT) is discussed to be centrally involved in invasion, stemness, and drug resistance. Experimental models to evaluate this process in its biological complexity are limited. To shed light on EMT impact and test drug response more reliably, we use a lung tumor test system based on a decellularized intestinal matrix showing more in vivo-like proliferation levels and enhanced expression of clinical markers and carcinogenesis-related genes.
View Article and Find Full Text PDF