Publications by authors named "Samantha Coffler"

Magnetic control of cell activity has applications ranging from non-invasive neurostimulation to remote activation of cell-based therapies. Unlike other methods of regulating cell activity like heat and light, which are based on known receptors or proteins, no magnetically gated channel has been identified to date. As a result, effective approaches for magnetic control of cell activity are based on strong alternating magnetic fields able to induce electric fields or materials that convert magnetic energy into electrical, thermal, or mechanical energy to stimulate cells.

View Article and Find Full Text PDF

Synthetic materials and devices that interact with light, ultrasound, or magnetic fields can be used to modulate neural activity with high spatial and temporal precision; however, these approaches often lack the ability to target genetically defined cell types and signaling pathways. Genetically encoded proteins can be expressed to modify the host tissue and provide cellular and molecular specificity, but compared to synthetic materials, these proteins often interact weakly with externally applied energy sources. Synthetic materials can respond to optical, acoustic, and magnetic stimuli to focus, convert, and amplify forms of energy to ones that are more accessible to engineered cells and proteins.

View Article and Find Full Text PDF