Publications by authors named "Samantha Busfield"

Neutrophils are the most abundant WBCs and have an essential role in the clearance of pathogens. Tight regulation of neutrophil numbers and their recruitment to sites of inflammation is critical in maintaining a balanced immune response. In various inflammatory conditions, such as rheumatoid arthritis, vasculitis, cystic fibrosis, and inflammatory bowel disease, increased serum G-CSF correlates with neutrophilia and enhanced neutrophil infiltration into inflamed tissues.

View Article and Find Full Text PDF

The prognosis of older patients with acute myelogenous leukemia is generally poor. The interleukin-3 receptor α-chain (CD123) is highly expressed on the surface of acute leukemia cells compared with normal hematopoietic stem cells. CSL362 is a fully humanized, CD123-neutralizing monoclonal antibody containing a modified Fc structure, which enhances human natural killer cell antibody-dependent cell-mediated cytotoxicity.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) blasts express high levels of interlekin-3 (IL-3) receptor-α (CD123). CSL360 is a recombinant, chimeric immunoglobulin G1 (IgG1), anti-CD123 monoclonal antibody (MoAb) that neutralizes IL-3 and demonstrates anti-leukemic activity in vitro. This phase 1 study assessed safety, pharmacokinetics and bioactivity of weekly intravenous CSL360 for 12 weeks in 40 patients with advanced AML across five dose levels (0.

View Article and Find Full Text PDF

Interleukin-3 (IL-3) is an activated T cell product that bridges innate and adaptive immunity and contributes to several immunopathologies. Here, we report the crystal structure of the IL-3 receptor α chain (IL3Rα) in complex with the anti-leukemia antibody CSL362 that reveals the N-terminal domain (NTD), a domain also present in the granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-5, and IL-13 receptors, adopting unique "open" and classical "closed" conformations. Although extensive mutational analyses of the NTD epitope of CSL362 show minor overlap with the IL-3 binding site, CSL362 only inhibits IL-3 binding to the closed conformation, indicating alternative mechanisms for blocking IL-3 signaling.

View Article and Find Full Text PDF

Interleukin-13 (IL-13) is a cytokine implicated in airway diseases such as asthma and idiopathic pulmonary fibrosis. IL-13 signals through a heterodimeric receptor complex consisting of IL-13Rα1 and IL-4Rα, known as the type II IL-4R. IL-4 also signals through this receptor and as such many of the biological effects of IL-13 and IL-4 are similar.

View Article and Find Full Text PDF

Despite the remarkable efficacy of tyrosine kinase inhibitors (TKIs) in eliminating differentiated chronic myeloid leukemia (CML) cells, recent evidence suggests that leukemic stem and progenitor cells (LSPCs) persist long term, which may be partly attributable to cytokine-mediated resistance. We evaluated the expression of the interleukin 3 (IL-3) receptor α subunit (CD123), an established marker of acute myeloid leukemia stem cells, on CML LSPCs and the potential of targeting those cells with the humanized anti-CD123 monoclonal antibody CSL362. Compared with normal donors, CD123 expression was higher in CD34(+)/CD38(-) cells of both chronic phase and blast crisis CML patients, with levels increasing upon disease progression.

View Article and Find Full Text PDF

Leukemia stem cells (LSCs) initiate and sustain the acute myeloid leukemia (AML) clonal hierarchy and possess biological properties rendering them resistant to conventional chemotherapy. The poor survival of AML patients raises expectations that LSC-targeted therapies might achieve durable remissions. We report that an anti-interleukin-3 (IL-3) receptor alpha chain (CD123)-neutralizing antibody (7G3) targeted AML-LSCs, impairing homing to bone marrow (BM) and activating innate immunity of nonobese diabetic/severe-combined immunodeficient (NOD/SCID) mice.

View Article and Find Full Text PDF

The primary olfactory pathway in adult mammals has retained a remarkable potential for self-repair. A specialized glial cell within the olfactory nerve, called olfactory ensheathing cell (OEC), and their associated extracellular matrix are thought to play an important role during regenerative events in this system. To gain insight into novel molecules that could mediate the OEC-supported growth of axons within the olfactory nerve, gene expression profiling experiments were conducted which revealed high expression of the glycoprotein fibulin-3 in OECs.

View Article and Find Full Text PDF

Injured neurons in the mammalian central nervous system (CNS) do not normally regenerate their axons after injury. Neurotrauma to the CNS usually results in axonal damage and subsequent loss of communication between neuronal networks, causing long-term functional deficits. For CNS regeneration, repair strategies need to be developed that promote regrowth of lesioned axon projections and restoration of neuronal connectivity.

View Article and Find Full Text PDF

The neuregulins (NRGs) are a family of four structurally related growth factors that are expressed in the developing and adult brain. NRG-1 is essential for normal heart formation and has been implicated in the development and maintenance of both neurons and glia. NRG-2 was identified on the basis of its homology to NRG-1 and, like NRG-1, is expressed predominantly by neurons in the central nervous system.

View Article and Find Full Text PDF

The SOCS family of genes are negative regulators of cytokine signalling with SOCS-1 displaying tumor suppressor activity. SOCS-1, CIS and SOCS-3 have been implicated in the regulation of red blood cell production. In this study, a detailed examination was conducted on the expression patterns of these three SOCS family members in normal erythroid progenitors and a panel of erythroleukemic cell lines.

View Article and Find Full Text PDF

LIGHT (TNFSF14), a tumor necrosis factor superfamily member expressed by activated T cells, binds to herpes virus entry mediator (HVEM) which is constitutively expressed by T cells and costimulates T cell activation in a CD28-independent manner. Given interest in regulating the effector functions of T cells in vivo, we examined the role of LIGHT-HVEM costimulation in a murine cardiac allograft rejection model. Normal hearts lacked LIGHT or HVEM mRNA expression, but allografts showed strong expression of both genes from day 3 after transplant, and in situ hybridization and immunohistology-localized LIGHT and HVEM to infiltrating leukocytes.

View Article and Find Full Text PDF