The mandible is composed of several musculoskeletal tissues including bone, cartilage, and tendon that require precise patterning to ensure structural and functional integrity. Interestingly, most of these tissues are derived from one multipotent cell population called cranial neural crest cells (CNCCs). How CNCCs are properly instructed to differentiate into various tissue types remains nebulous.
View Article and Find Full Text PDFCleft lip and cleft palate are among the most common congenital anomalies and are the result of incomplete fusion of embryonic craniofacial processes or palatal shelves, respectively. We know that genetics play a large role in these anomalies but the list of known causal genes is far from complete. As part of a larger sequencing effort of patients with micrognathia and cleft palate we identified a candidate variant in () which is rare, changing a highly conserved amino acid, and predicted to be pathogenic by a number of metrics.
View Article and Find Full Text PDFThe Society for Craniofacial Genetics and Developmental Biology (SCGDB) held its 46th Annual Meeting at Cincinnati Children's Hospital Medical Center in Cincinnati, Ohio on October 10th-12th, 2023. On the first day of the meeting, Drs. Sally Moody and Justin Cotney were each honored with the SCGDB Distinguished Scientist Awards for their exceptional contributions to the field of craniofacial biology.
View Article and Find Full Text PDFCraniofacial abnormalities account for approximately one third of birth defects. The regulatory programs that build the face require precisely controlled spatiotemporal gene expression, achieved through tissue-specific enhancers. Clusters of coactivated enhancers and their target genes, known as superenhancers, are important in determining cell identity but have been largely unexplored in development.
View Article and Find Full Text PDFBacterial artificial chromosome transgenic models, including most , enable potent interrogation of gene function but require rigorous validation as limitations emerge. Due to its high relevance to metabolic studies, we performed comprehensive analysis of the line which is widely used for brown fat research. Hemizygotes exhibited major brown and white fat transcriptomic dysregulation, indicating potential altered tissue function.
View Article and Find Full Text PDFPrimary cilia are nearly ubiquitous organelles that transduce molecular and mechanical signals. Although the basic structure of the cilium and the cadre of genes that contribute to ciliary formation and function (the ciliome) are believed to be evolutionarily conserved, the presentation of ciliopathies with narrow, tissue-specific phenotypes and distinct molecular readouts suggests that an unappreciated heterogeneity exists within this organelle. Here, we provide a searchable transcriptomic resource for a curated primary ciliome, detailing various subgroups of differentially expressed genes within the ciliome that display tissue and temporal specificity.
View Article and Find Full Text PDFCiliopathies represent a disease class characterized by a broad range of phenotypes including polycystic kidneys and skeletal anomalies. Ciliopathic skeletal phenotypes are among the most common and most difficult to treat due to a poor understanding of the pathological mechanisms leading to disease. Using an avian model (talpid2) for a human ciliopathy with both kidney and skeletal anomalies (orofaciodigital syndrome 14), we identified disruptions in the FGF23-PTH axis that resulted in reduced calcium uptake in the developing mandible and subsequent micrognathia.
View Article and Find Full Text PDFThe Society for Craniofacial Genetics and Developmental Biology (SCGDB) held its 44th Annual Meeting in a virtual format on October 18-19, 2021. The SCGDB meeting included presentation of the SCGDB Distinguished Scientists in Craniofacial Research Awards to Drs. Paul Trainor and Jeff Bush and four scientific sessions on the genomics of craniofacial development, craniofacial morphogenesis and regeneration, translational craniofacial biology and signaling during craniofacial development.
View Article and Find Full Text PDFNat Commun
November 2021
Subunit switches in the BAF chromatin remodeler are essential during development. ARID1B and its paralog ARID1A encode for mutually exclusive BAF subunits. De novo ARID1B haploinsufficient mutations cause neurodevelopmental disorders, including Coffin-Siris syndrome, which is characterized by neurological and craniofacial features.
View Article and Find Full Text PDFThe primary cilium is a ubiquitous, microtubule-based cellular organelle. Primary cilia dysfunction results in a group of disorders termed ciliopathies. C2 domain containing 3 centriole elongation regulator (C2cd3), encodes a centriolar protein essential for ciliogenesis.
View Article and Find Full Text PDFPrimary cilia are ubiquitous microtubule-based organelles that serve as signaling hubs for numerous developmental pathways, most notably the Hedgehog (Hh) pathway. Defects in the structure or function of primary cilia result in a class of diseases called ciliopathies. It is well known that primary cilia participate in transducing a Hh signal, and as such ciliopathies frequently present with phenotypes indicative of aberrant Hh function.
View Article and Find Full Text PDFThe Society for Craniofacial Genetics and Developmental Biology (SCGDB) held its 43rd annual meeting in a virtual format on October 19-20, 2020. The SCGDB meeting included the presentation of the SCGDB Distinguished Scientists in Craniofacial Research Awards to Marilyn Jones and Kerstin Ludwig and four scientific sessions on the molecular regulation of craniofacial development, craniofacial morphogenesis, translational craniofacial biology, and signaling during craniofacial development. The meeting also included workshops on career development, NIH/NIDCR funding, and the utility of the FaceBase database, as well as two poster sessions.
View Article and Find Full Text PDFBackground: The naturally occurring chicken mutant talpid (ta ), best known for its limb and craniofacial defects, has long served as a valuable tool for developmental biologists studying growth and patterning of craniofacial structures and the limb. The mutant provides a unique tool to examine the molecular and cellular processes regulating limb development.
Results: This mutant also provides unique insights into the evolution of developmental genetic programs.
Ciliopathies represent a growing class of diseases caused by defects in microtubule-based organelles called primary cilia. Approximately 30% of ciliopathies are characterized by craniofacial phenotypes such as craniosynostosis, cleft lip/palate and micrognathia. Patients with ciliopathic micrognathia experience a particular set of difficulties, including impaired feeding and breathing, and have extremely limited treatment options.
View Article and Find Full Text PDFDespite a common understanding that Gli TFs are utilized to convey a Hh morphogen gradient, genetic analyses suggest craniofacial development does not completely fit this paradigm. Using the mouse model (), we demonstrated that rather than being driven by a Hh threshold, robust Gli3 transcriptional activity during skeletal and glossal development required interaction with the basic helix-loop-helix TF Hand2. Not only did genetic and expression data support a co-factorial relationship, but genomic analysis revealed that Gli3 and Hand2 were enriched at regulatory elements for genes essential for mandibular patterning and development.
View Article and Find Full Text PDFIn mammals, the epithelial tissues of major salivary glands generate saliva and drain it into the oral cavity. For submandibular salivary glands (SMGs), the epithelial tissues arise during embryogenesis from naïve oral ectoderm adjacent to the base of the tongue, which begins to thicken, express SOX9 and invaginate into underlying mesenchyme. The developmental mechanisms initiating salivary gland development remain unexplored.
View Article and Find Full Text PDFMolecular signals are the guiding force of development, imparting direction upon cells to divide, migrate, differentiate, etc. The mechanisms by which a cell can receive and transduce these signals into measurable actions remains a 'black box' in developmental biology. Primary cilia are ubiquitous, microtubule-based organelles that dynamically extend from a cell to receive and process molecular and mechanical signaling cues.
View Article and Find Full Text PDFBackground: Submandibular glands (SMGs) are specialized epithelial structures which generate saliva necessary for mastication and digestion. Loss of SMGs can lead to inflammation, oral lesions, fungal infections, problems with chewing/swallowing, and tooth decay. Understanding the development of the SMG is important for developing therapeutic options for patients with impaired SMG function.
View Article and Find Full Text PDFDevelopment of the brain directly influences the development of the face via both physical growth and Sonic hedgehog (SHH) activity; however, little is known about how neural crest cells (NCCs), the mesenchymal population that comprise the developing facial prominences, influence the development of the brain. We utilized the conditional ciliary mutant Wnt1-Cre;Kif3a to demonstrate that loss of primary cilia on NCCs resulted in a widened ventral forebrain. We found that neuroectodermal Shh expression, dorsal/ventral patterning, and amount of proliferation in the ventral neuroectoderm was not changed in Wnt1-Cre;Kif3a mutants; however, tissue polarity and directional cell division were disrupted.
View Article and Find Full Text PDFPrimary cilia are nearly ubiquitous, cellular projections that function to transduce molecular signals during development. Loss of functional primary cilia has a particularly profound effect on the developing craniofacial complex, causing several anomalies including craniosynostosis, micrognathia, midfacial dysplasia, cleft lip/palate and oral/dental defects. Development of the craniofacial complex is an intricate process that requires interactions between several different tissues including neural crest cells, neuroectoderm and surface ectoderm.
View Article and Find Full Text PDFPrimary cilia are organelles extended from virtually all cells and are required for the proper regulation of a number of canonical developmental pathways. The role in cortical development of proteins important for ciliary form and function is a relatively understudied area. Here we have taken a genetic approach to define the role in forebrain development of three intraflagellar transport proteins known to be important for primary cilia function.
View Article and Find Full Text PDFCiliopathies are a class of diseases caused by the loss of a ubiquitous, microtubule-based organelle called a primary cilium. Ciliopathies commonly result in defective development of the craniofacial complex, causing midfacial defects, craniosynostosis, micrognathia and aglossia. Herein, we explored how the conditional loss of primary cilia on neural crest cells (Kif3a;Wnt1-Cre) generated aglossia.
View Article and Find Full Text PDFCold Spring Harb Perspect Biol
September 2017
Seventy-five percent of congenital disorders present with some form of craniofacial malformation. The frequency and severity of these malformations makes understanding the etiological basis crucial for diagnosis and treatment. A significant link between craniofacial malformations and primary cilia arose several years ago with the determination that ∼30% of ciliopathies could be primarily defined by their craniofacial phenotype.
View Article and Find Full Text PDF