Coffin-Siris Syndrome (CSS, MIM 135900) is now a well-described genetic condition caused by pathogenic variants in the Bromocriptine activating factor (BAF) complex, including ARID1B, ARID1A, ARID2, SMARCA4, SMARCE1, SMARCB1, SOX11, SMARCC2, DPF2, and more recently, BICRA. Individuals with CSS have a spectrum of various medical challenges, most often evident at birth, including feeding difficulties, hypotonia, organ-system anomalies, and learning and developmental differences. The classic finding of fifth digit hypo- or aplasia is seen variably.
View Article and Find Full Text PDFDNA sequencing-based studies of neurodevelopmental disorders (NDDs) have identified a wide range of genetic determinants. However, a comprehensive analysis of these data, in aggregate, has not to date been performed. Here, we find that genes encoding the mammalian SWI/SNF (mSWI/SNF or BAF) family of ATP-dependent chromatin remodeling protein complexes harbor the greatest number of de novo missense and protein-truncating variants among nuclear protein complexes.
View Article and Find Full Text PDFCoffin-Siris syndrome (CSS) is a rare neurodevelopmental disorder that is associated with multiple congenital anomalies and caused by de novo monoallelic germline pathogenic variants in BAF-complex genes. Despite their function as tumor suppressors, the cancer risk in patients with CSS remains unclear. We analyzed cancer sequencing data sets, conducted a comprehensive literature review of patients with CSS diagnosed with malignancies, and examined a cohort of 376 CSS registry patients to estimate cancer frequency.
View Article and Find Full Text PDFThis case presents a family with multiple individuals diagnosed with congenital heart disease (CHD) secondary to a novel TAK1-binding protein 2 pathogenic variant. This case advocates the use of cardiovascular genetic testing in individuals with CHD as part of a comprehensive approach to managing infants with CHD. ().
View Article and Find Full Text PDFThe vision of the American Society of Human Genetics (ASHG) is that people everywhere will realize the benefits of human genetics and genomics. Implicit in that vision is the importance of ensuring that the benefits of human genetics and genomics research are realized in ways that minimize harms and maximize benefits, a goal that can only be achieved through focused efforts to address health inequities and increase the representation of underrepresented communities in genetics and genomics research. This guidance is intended to advance community engagement as an approach that can be used across the research lifecycle.
View Article and Find Full Text PDFCoffin-Siris syndrome (CSS) is an autosomal dominant neurodevelopmental syndrome that can present with a variety of structural birth defects. Pathogenic variants in 12 genes have been shown to cause CSS. Most of these genes encode proteins that are a part of the mammalian switch/sucrose non-fermentable (mSWI/SNF; BAF) complex.
View Article and Find Full Text PDFInborn errors of metabolism (IEMs) are a large group of disorders that can present in any age group and must be considered in the differential diagnosis for a variety of signs and symptoms appearing in infants and children. The rarity and complexity of these conditions often make them difficult to recognize, as they may mimic more common conditions. This review article discusses some of the more commonly presenting IEMs that are important for the general pediatrician to understand when evaluating a sick patient.
View Article and Find Full Text PDFThe pre-mRNA-processing factor 8, encoded by PRPF8, is a scaffolding component of a spliceosome complex involved in the removal of introns from mRNA precursors. Previously, heterozygous pathogenic variants in PRPF8 have been associated with autosomal dominant retinitis pigmentosa. More recently, PRPF8 was suggested as a candidate gene for autism spectrum disorder due to the enrichment of sequence variants in this gene in individuals with neurodevelopmental disorders.
View Article and Find Full Text PDFPurpose: This paper aims to report collective information on safety and efficacy of empagliflozin drug repurposing in individuals with glycogen storage disease type Ib (GSD Ib).
Methods: This is an international retrospective questionnaire study on the safety and efficacy of empagliflozin use for management of neutropenia/neutrophil dysfunction in patients with GSD Ib, conducted among the respective health care providers from 24 countries across the globe.
Results: Clinical data from 112 individuals with GSD Ib were evaluated, representing a total of 94 treatment years.
Pathogenic variants in USP9X, on X chromosome, have been implicated in syndromic intellectual disability (ID) in both males and females with distinct craniofacial features. We report a truncating variant, c.885_889delAAAAG, p.
View Article and Find Full Text PDFCoffin-Siris syndrome (CSS, MIM 135900) is a now well-described, multiple congenital anomaly/intellectual disability syndrome classically characterized by fifth digit/nail hypoplasia, coarse facial features, and a range of organ-system related anomalies. Since its initial description in 1970, and the discovery of associated genes in 2011, CSS now encompasses a wide range of phenotypes and abilities caused by pathogenic variants in the BAF complex (often referred to as "BAFopathy"). It appears that the BAF complex leads to speech and language impairments in this population, and subsequently we have reviewed individuals in the CSS/BAF registry to understand the prevalence and degree of this particular learning difference.
View Article and Find Full Text PDFBAFopathies are a heterogenous group of neurodevelopmental disorders caused by mutations in genes encoding subunits of the BAF complex, and they exhibit a broad clinical phenotypic spectrum. Pathogenic heterozygous variants in SMARCC2 have been implicated in Coffin-Siris syndrome 8 (MIM 618362) with variable neurodevelopmental presentations. We report here two relatively severely affected patients with two different SMARCC2 variants: one has de novo pathogenic variant, c.
View Article and Find Full Text PDFThe phenotypic variability associated with pathogenic variants in Lysine Acetyltransferase 6B (KAT6B, a.k.a.
View Article and Find Full Text PDFCoffin-Siris syndrome (CSS, MIM 135900) is a multi-system intellectual disability syndrome characterized by classic dysmorphic features, developmental delays, and organ system anomalies. Genes in the BRG1(BRM)-associated factors (BAF, Brahma associated factor) complex have been shown to be causative, including , , , , , , , , , and . In order to describe more robust genotype-phenotype correlations, we collected data from 208 individuals from the CSS/BAF complex registry with pathogenic variants in seven of these genes.
View Article and Find Full Text PDFBackground: An identical homozygous missense variant in EIF3F, identified through a large-scale genome-wide sequencing approach, was reported as causative in nine individuals with a neurodevelopmental disorder, characterized by variable intellectual disability, epilepsy, behavioral problems and sensorineural hearing-loss. To refine the phenotypic and molecular spectrum of EIF3F-related neurodevelopmental disorder, we examined independent patients.
Results: 21 patients were homozygous and one compound heterozygous for c.
Purpose: Neurodevelopmental disorders (NDDs) encompass a spectrum of genetically heterogeneous disorders with features that commonly include developmental delay, intellectual disability, and autism spectrum disorders. We sought to delineate the molecular and phenotypic spectrum of a novel neurodevelopmental disorder caused by variants in the GNAI1 gene.
Methods: Through large cohort trio-based exome sequencing and international data-sharing, we identified 24 unrelated individuals with NDD phenotypes and a variant in GNAI1, which encodes the inhibitory Gαi1 subunit of heterotrimeric G-proteins.
Although somatic mutations in Histone 3.3 (H3.3) are well-studied drivers of oncogenesis, the role of germline mutations remains unreported.
View Article and Find Full Text PDFPathogenic variants in the homologous and highly conserved genes-CREBBP and EP300-are causal for Rubinstein-Taybi syndrome (RSTS). CREBBP and EP300 encode histone acetyltransferases (HAT) that act as transcriptional co-activators, and their haploinsufficiency causes the pathology characteristic of RSTS by interfering with global transcriptional regulation. Though generally a well-characterized syndrome, there is a clear phenotypic spectrum; rare associations have emerged with increasing diagnosis that is critical for comprehensive understanding of this rare syndrome.
View Article and Find Full Text PDF