Using molecular dynamics simulations, we analyze ion separation and water purification through a piston-driven graphene/carbon-nanotube filter in the presence of an external electric field. Three different magnitudes of electric field are applied along the nanotube's axial direction with the goal of separating sodium and chloride ions in a NaCl aqueous solution. For comparison purposes, we also study the same system in zero fields.
View Article and Find Full Text PDFPorous graphene sheets can be considered as an ultrathin membrane in reverse osmosis water desalination processes. In this paper, employing the molecular dynamics simulation method, the performance of multilayer porous graphene membranes with different pore sizes, layer separation, and layer number were investigated. We found that salt rejection and water flux through the membrane significantly depend on the graphene pore size and number of graphene layers, and controlling these parameters could improve the filtration process.
View Article and Find Full Text PDF