Methamphetamine is a psychoactive substance that competes with the dopamine transporter, disrupting its flow and storage. This can trigger oxidative stress, finally resulting in neural cell death. Due to the increasing prevalence of methamphetamine use, extensive research has been devoted to finding treatments that ameliorate its detrimental effects.
View Article and Find Full Text PDFMultiple sclerosis (MS) is an autoimmune disease that affects the central nervous system. Although remarkable progress has been made in treating MS, current therapies are less effective in protecting against the progression of the disease. Since cucurbitacins have shown an extreme range of pharmacological properties, in this study, we aimed to investigate the prophylactic effect of cucurbitacin B (CuB) in the experimental MS model.
View Article and Find Full Text PDFParkinson's disease (PD) is an age-associated neurodegenerative condition in which some genetic variants are known to increase disease susceptibility on interaction with environmental factors inducing oxidative stress. Different mutations in the gene are reported as the major genetic contributors to PD. E46K mutation pathogenicity has not been investigated as intensive as other gene mutations including and .
View Article and Find Full Text PDFNeurochem Res
November 2019
Cuprizone (cup) model targets oligodendrocytes (OLGs) degeneration and is frequently used for the mechanistic understanding of de- and remyelination. Improperly, this classic model is time-consuming and the extent of brain lesions and behavioral deficits are changeable (both temporally and spatially) within a mouse strain. We aimed to offer an alternative, less time-consuming, and more reproducible cup model.
View Article and Find Full Text PDFOxidative stress is one of the major etiological factors implicated in pathogenesis of neurodegenerative diseases. Since neurons are more sensitive to oxidative damage there is an increasing interest in developing novel antioxidant therapies, especially herbal preparations due to their safety profile and high efficiency. In this regard, the neuroprotective potential of a novel antioxidant compound, 4-hydroxyisophthalic acid (4-HIPA) isolated from aqueous extract of Decalepis hamiltonii roots was examined using transgenic Drosophila model of taupathy expressing wild-type and mutant forms of 2N4R isoform of human microtubule associated protein tau (MAPT).
View Article and Find Full Text PDFThe ε4 isoform of apolipoprotein E (ApoE4) that is involved in neuron-glial lipid metabolism has been demonstrated as the main genetic risk factor in late-onset of Alzheimer's disease. However, the mechanism underlying ApoE4-mediated neurodegeneration remains unclear. We created a transgenic model of neurodegenerative disorder by expressing ε3 and ε4 isoforms of human ApoE in the Drosophila melanogaster.
View Article and Find Full Text PDFOverexpression of human α-synuclein gene in Drosophila can reduce lifespan, and we have performed lifespan assay for A30P and A53Tα-synuclein transgenic and control (elav-GAL4, UAS-A30P, UAS-A53T) flies. Our results showed reduced lifespan of transgenic flies compared to controls. We have also investigated behavioral responses, levels of reactive oxygen species (ROS) and lipid peroxidation (LPO) and activities of catalase (CAT) and superoxide dismutase (SOD) in a combined genetic-toxin model (Ethanol-A30P or A53Tα-synuclein models) and controls.
View Article and Find Full Text PDFMemory impairment during aging is believed to be a consequence of decline in neuronal function and increase in neurodegeneration. Accumulation of oxidative damage and reduction of antioxidant defense system play a key role in organismal aging and functional senescence. In our study, we examined the age-related memory impairment (AMI) in relation to oxidative stress using Drosophila model.
View Article and Find Full Text PDFIn this paper, we have demonstrated for the first time, the antioxidant and neuroprotective effects of Decalepis hamiltonii (Dh) root extract against paraquat (PQ)-induced oxidative stress and neurotoxicity in Drosophila melanogaster. Exposure of adult D. melanogaster (Oregon K) to PQ induced oxidative stress as evidenced by glutathione depletion, lipid peroxidation and enhanced activities of antioxidant enzymes such as catalase, superoxide dismutase as well as elevated levels of acetylcholine esterase.
View Article and Find Full Text PDFAge-associated accumulation of oxidative damage linked to decline of antioxidant defense mechanism, leads to impairment of cognitive function in many organisms. These damages can pass through generations and affect the cognitive quality of progenies. In Drosophila, classical olfactory conditioning results in the formation of different types of memory.
View Article and Find Full Text PDF