Publications by authors named "Saman Nayyab"

Mammalian sperm must undergo capacitation to become fertilization-competent. While working on mice, we recently developed a new methodology for treating sperm which results in higher rates of fertilization and embryo development after fertilization. Sperm incubated in media devoid of nutrients lose motility, although they remain viable.

View Article and Find Full Text PDF

Despite renewed interest, development of chemical biology methods to study peptidoglycan metabolism has lagged in comparison to the glycobiology field in general. To address this, a panel of diamides were screened against the Gram-positive bacterium to identify inhibitors of bacterial growth. The screen identified the diamide masarimycin as a bacteriostatic inhibitor of growth with an MIC of 8 µM.

View Article and Find Full Text PDF

We have previously shown that members of the family of testis-specific serine/threonine kinases (TSSKs) are post-meiotically expressed in testicular germ cells and in mature sperm in mammals. The restricted post-meiotic expression of TSSKs as well as the importance of phosphorylation in signaling processes strongly suggest that TSSKs have an important role in germ cell differentiation and/or sperm function. This prediction has been supported by the reported sterile phenotype of the TSSK6 knock-out (KO) mice and of the double TSSK1/TSSK2 KO.

View Article and Find Full Text PDF

Male contraception is a very active area of research. Several hormonal agents have entered clinical trials, while potential non-hormonal targets have been brought to light more recently and are at earlier stages of development. The general strategy is to target genes along the molecular pathways of sperm production, maturation, or function, and it is predicted that these novel approaches will hopefully lead to more selective male contraceptive compounds with a decreased side effect burden.

View Article and Find Full Text PDF

N-Acetylglucosaminidases (GlcNAcases) play an important role in the remodeling and recycling of bacterial peptidoglycan by degrading the polysaccharide backbone. Genetic deletions of autolysins can impair cell division and growth, suggesting an opportunity for using small molecule autolysin inhibitors both as tools for studying the chemical biology of autolysins and also as antibacterial agents. We report here the synthesis and evaluation of a panel of diamides that inhibit the growth of Bacillus subtilis.

View Article and Find Full Text PDF