ATR plays key roles in cellular responses to DNA damage and replication stress, a pervasive feature of cancer cells. ATR inhibitors (ATRi) are in clinical development for treating various cancers, including those with high replication stress, such as is elicited by ARID1A deficiency, but the cellular mechanisms that determine ATRi efficacy in such backgrounds are unclear. Here, we have conducted unbiased genome-scale CRISPR screens in ARID1A-deficient and proficient cells treated with ATRi.
View Article and Find Full Text PDFDNA double-strand breaks (DSBs) are highly toxic lesions that threaten genome integrity and cell survival. To avoid harmful repercussions of DSBs, a wide variety of DNA repair factors are recruited to execute DSB repair. Previously, we demonstrated that RBM6 splicing factor facilitates homologous recombination (HR) of DSB by regulating alternative splicing-coupled nonstop-decay of the HR protein APBB1/Fe65.
View Article and Find Full Text PDFAll organisms possess molecular mechanisms that govern DNA repair and associated DNA damage response (DDR) processes. Owing to their relevance to human disease, most notably cancer, these mechanisms have been studied extensively, yet new DNA repair and/or DDR factors and functional interactions between them are still being uncovered. The emergence of CRISPR technologies and CRISPR-based genetic screens has enabled genome-scale analyses of gene-gene and gene-drug interactions, thereby providing new insights into cellular processes in distinct DDR-deficiency genetic backgrounds and conditions.
View Article and Find Full Text PDFThe negative elongation factor (NELF) is a four-subunit protein complex (NELF-E, NELF-A, NELF-B and NELF-C/D) that negatively regulates transcription elongation of RNA polymerase II (Pol II). Interestingly, upregulation of NELF-E subunit promotes hepatocellular carcinoma (HCC) and pancreatic cancer. In addition, we have previously shown that NELF complex fosters double-strand break (DSB)-induced transcription silencing and promotes homology-directed repair (HDR).
View Article and Find Full Text PDFCells have evolved DNA damage response (DDR) to repair DNA lesions and thus preserving genomic stability and impeding carcinogenesis. DNA damage induction is accompanied by transient transcription repression. Here, we describe a previously unrecognized role of chromodomain Y-like (CDYL1) protein in fortifying double-strand break (DSB)-induced transcription repression and repair.
View Article and Find Full Text PDFDouble-strand breaks (DSBs) trigger rapid and transient transcription pause to prevent collisions between repair and transcription machineries at damage sites. Little is known about the mechanisms that ensure transcriptional block after DNA damage. Here, we reveal a novel role of the negative elongation factor NELF in blocking transcription activity nearby DSBs.
View Article and Find Full Text PDFThe KDM4 family of lysine demethylases consists of five members, KDM4A, -B and -C that demethylate H3K9me2/3 and H3K36me2/3 marks, while KDM4D and -E demethylate only H3K9me2/3. Recent studies implicated KDM4 proteins in regulating genomic instability and carcinogenesis. Here, we describe a previously unrecognized pathway by which hyperactivity of KDM4 demethylases promotes genomic instability.
View Article and Find Full Text PDFVarious types of human cancers exhibit amplification or deletion of KDM4A-D members, which selectively demethylate H3K9 and H3K36, thus implicating their activity in promoting carcinogenesis. On this basis, it was hypothesized that dysregulated expression of KDM4A-D family promotes chromosomal instabilities by largely unknown mechanisms. Here, we show that unlike KDM4A-B, KDM4C is associated with chromatin during mitosis.
View Article and Find Full Text PDF