Publications by authors named "Samah Khawaled"

Positron emission tomography (PET) imaging plays a pivotal role in oncology for the early detection of metastatic tumors and response to therapy assessment due to its high sensitivity compared to anatomical imaging modalities. The balance between image quality and radiation exposure is critical, as reducing the administered dose results in a lower signal-to-noise ratio (SNR) and information loss, which may significantly affect clinical diagnosis. Deep learning (DL) algorithms have recently made significant progress in low-dose (LD) PET reconstruction.

View Article and Find Full Text PDF

The ability to reconstruct high-quality images from undersampled MRI data is vital in improving MRI temporal resolution and reducing acquisition times. Deep learning methods have been proposed for this task, but the lack of verified methods to quantify the uncertainty in the reconstructed images hampered clinical applicability. We introduce "NPB-REC", a non-parametric fully Bayesian framework, for MRI reconstruction from undersampled data with uncertainty estimation.

View Article and Find Full Text PDF

Quantification of uncertainty in deep-neural-networks (DNN) based image registration algorithms plays a critical role in the deployment of image registration algorithms for clinical applications such as surgical planning, intraoperative guidance, and longitudinal monitoring of disease progression or treatment efficacy as well as in research-oriented processing pipelines. Currently available approaches for uncertainty estimation in DNN-based image registration algorithms may result in sub-optimal clinical decision making due to potentially inaccurate estimation of the uncertainty of the registration stems for the assumed parametric distribution of the registration latent space. We introduce NPBDREG, a fully non-parametric Bayesian framework for uncertainty estimation in DNN-based deformable image registration by combining an Adam optimizer with stochastic gradient Langevin dynamics (SGLD) to characterize the underlying posterior distribution through posterior sampling.

View Article and Find Full Text PDF