Alzheimer's disease is a neurodegenerative disorder that impairs neurocognitive functions. Acetylcholinesterase, Butyrylcholinesterase, Monoamine Oxidase B, Beta-Secretase, and Glycogen Synthase Kinase Beta play central roles in its pathogenesis. Current medications primarily inhibit AChE but fail to halt or reverse disease progression due to the multifactorial nature of Alzheimer's.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a chronic and progressive neurodegenerative brain disorder, primarily affecting the elderly. Its socio-economic impact and mortality rate are alarming, necessitating innovative approaches to drug discovery. Unlike single-target diseases, Alzheimer's multifactorial nature makes single-target approaches less effective.
View Article and Find Full Text PDFPhyto-nanotechnology provides an eco-friendly approach for synthesizing biocompatible metal nanoparticles (NPs) with therapeutic potential. (LI) has been historically valued for its diverse medicinal applications, especially its exceptional biological potency against various skin diseases, attributed to its rich abundance of bioactive compounds. Therefore, herein, plant-based iron and zinc NPs were biofabricated via sustainable and simple methods, using crude extracts of the aerial parts of LI as reducing, coating, and stabilizing agents.
View Article and Find Full Text PDFCaves are a unique ecosystem that harbor diverse microorganisms, and provide a challenging environment to the dwelling microbial communities, which may boost gene expression and can lead to the production of inimitable bioactive natural products. In this study, we obtained 59 actinobacteria from four different caves located in Bahadurkhel, District Karak, Pakistan. On the basis of taxonomic characteristics, 30 isolates were selected and screened for secondary metabolites production and bioactivity profiling.
View Article and Find Full Text PDFThe growth of nanoscale sciences enables us to define and design new methods and materials for a better life. Health and disease prevention are the main issues in the human lifespan. Some nanoparticles (NPs) have antimicrobial properties that make them useful in many applications.
View Article and Find Full Text PDFAngiotensensin-converting enzyme-2 (ACE2) is a receptor for SARS-CoV-2, allowing the virus to enter cells. Although tumor patients infected by SARS-CoV-2 often have a worse outcome, the expression, function and clinical relevance of ACE2 in tumors has not yet been thoroughly analyzed. In this study, RNA sequencing (RNA-seq) data from tumors, adjacent tissues and whole blood samples of COVID-19 patients from genome databases and from tumor cell lines and endothelial cells infected with different SARS-CoV-2 variants or transfected with an ACE2 expression vector (ACE2) or mock (ACE2) were analyzed for the expression of ACE2 and immune response relevant molecules in silico or by qPCR, flow cytometry, Western blot and/or RNA-seq.
View Article and Find Full Text PDFBackground: Angiogenesis is a crucial process in the growth and proliferation of cancer, enabling tumor growth through the formation of new vasculature and the supply of nutrients and oxygen to growing malignant cells. This disease-promoting process can be targeted through the inhibition of tyrosine kinase enzymes.
Objectives: The objective of this study is to evaluate the anticancer potential of various Moroccan plants from different regions.
Objective: To investigate the effect of mini-pulse methylprednisolone in the treatment of patients with COVID-19 hospitalized in the intensive care units (ICU).
Methods: This is a single-blind parallel non-randomized clinical trial that will be carried out on 60 hospitalized COVID-19 patients and conducted between February 2020 and December 2020 in Ardabil City Hospital, Ardabil, Iran. The t-test and chi-square test were used to compare the results of the two groups.
Introduction: Phyto-nanotechnology offers a sustainable method for synthesizing biocompatible metal nanoparticles (NPs) with therapeutic potential. The diverse medicinal flora in the UAE, particularly (LP), provides a vital resource for advancing this research area. This plant is historically valued in the region for its wide medicinal applications due to its abundance of bioactive compounds.
View Article and Find Full Text PDFThe UAE harbors a rich diversity of wild medicinal plants, such as Calotropis procera (CP), that are renowned for their extensive use in traditional medicine due to their abundance of bioactive phytochemicals. Zinc and iron metals possess significant pharmacological effects including antioxidant and anticancer properties. In this study, nanoparticles (NPs) containing zinc and iron were green synthesized utilizing ethanolic and aqueous extracts of CP aerial parts.
View Article and Find Full Text PDFHead and neck squamous cell carcinoma (HNSCC) is experiencing a rising incidence and mortality worldwide, emphasizing the need for reliable prognostic markers. Tumor-infiltrating lymphocytes (TILs) have emerged as a promising biomarker for predicting HNSCC prognosis, yet no systematic reviews have exclusively focused on hematoxylin and eosin (H&E)-stained formalin-fixed paraffin-embedded (FFPE) samples, which are routinely used in clinical practice. This systematic review and meta-analysis followed the PRISMA guidelines to examine the prognostic value of TILs in HNSCC using H&E-stained FFPE samples.
View Article and Find Full Text PDFBackground: The rising demand for body contouring and concerns about side effects of invasive surgical procedures have led to advances in providing new non-invasive alternative methods for weight reduction. The current retrospective study investigated the safety and efficacy of photobiomodulation technology in reducing local obesity in Middle Eastern participants.
Methods: Providing data about body circumferences of 30 participants, with body mass index (BMI) >28 and localized obesity in the abdomen, thighs, buttocks, or arms were included in the final data synthesis.
Aims: This study aimed to explore the potential of natural anticoagulant compounds as synergistic inhibitors of the main protease (Mpro) and papain-like protease (PLpro) of SARS-CoV-2 and find effective therapies against SARS-CoV-2 by investigating the inhibitory effects of natural anticoagulant compounds on key viral proteases.
Objective: The objectives of this study were to conduct rigorous virtual screening and molecular docking analyses to evaluate the binding affinities and interactions of selected anticoagulant compounds with Mpro and PLpro, to assess the pharmacokinetic and pharmacodynamic profiles of the compounds to determine their viability for therapeutic use, and to employ molecular dynamics simulations to understand the stability of the identified compounds over time.
Methods: In this study, a curated collection of natural anticoagulant compounds was conducted.
Introduction: Aspergillus fumigatus, a significant fungal pathogen, poses a threat to human health, especially in immunocompromised individuals. Addressing the need for novel antifungal strategies, this study employs virtual screening to identify potential inhibitors of Fructosamine oxidase, also known as Amadoriase II, a crucial enzyme in A. fumigatus (PDB ID: 3DJE).
View Article and Find Full Text PDFHerein, we describe the design, synthesis, and biological evaluation of 15 + hybrids. These ligands are polyfunctionalized indole derivatives developed by juxtaposing selected pharmacophoric moieties of and to act as multifunctional ligands. Compounds and were identified as potent HDAC6 inhibitors (IC = 0.
View Article and Find Full Text PDFBackground: The increasing prevalence of diabetes and the side effects associated with current medications necessitate the development of novel candidate drugs targeting alpha-glucosidase as a potential treatment option.
Methods: This study employed computer-aided drug design techniques to identify potential alpha-glucosidase inhibitors from the PubChem database. Molecular docking was used to evaluate 81,197 compounds, narrowing the set for further analysis and providing insights into ligand-target interactions.
The application of bone grafting materials in bone tissue engineering is paramount for treating severe bone defects. In this comprehensive review, we explore the significance and novelty of utilizing bioactive polymers as grafts for successful bone repair. Unlike metals and ceramics, polymers offer inherent biodegradability and biocompatibility, mimicking the native extracellular matrix of bone.
View Article and Find Full Text PDFKey Clinical Message: This case report presents the interest of multidisciplinary management of extreme peri-implantitis requiring removal of implant emphasizing the different surgical and showing that the ovate pontic of conventional bridge is an optimal alternative for rehabilitation of the premolar sector, despite the fact that its main diffusion has been in the anterior sector due to the high demand aesthetic.
Abstract: Peri-implantitis leads to gradual peri-implant bone loss. Severe and extreme cases lead to complete implant failure and imply lost implants have to be removed.
Background: Mannitol may be a good excipient for hyaluronic acid (HA) filler.
Objective: This study aimed to assess the tolerability and effectiveness of a mannitol-containing HA filler for the improvement of nasolabial folds (NLFs).
Patients And Methods: Thirty Middle Eastern participants aged 18 to 65 years with moderate-to-severe NLFs on the Wrinkle Severity Rating Scale (WSRS) received 1 to 2 mL of a HA filler containing mannitol in both NLFs.
Acetylcholinesterase (AChE) is one of the main drug targets for treating Alzheimer's disease. This current study relies on multiple molecular modeling approaches to develop new potent inhibitors of AChE. We explored a 2D QSAR study using the statistical method of multiple linear regression based on a set of substituted 5-phenyl-1,3,4-oxadiazole and N-benzylpiperidine analogs, which were recently synthesized and proved their inhibitory activities against acetylcholinesterase (AChE).
View Article and Find Full Text PDFAlchemical free energy methods are useful in computer-aided drug design and computational protein design because they provide rigorous statistical mechanics-based estimates of free energy differences from molecular dynamics simulations. λ dynamics is a free energy method with the ability to characterize combinatorial chemical spaces spanning thousands of related systems within a single simulation, which gives it a distinct advantage over other alchemical free energy methods that are mostly limited to pairwise comparisons. Recently developed methods have improved the scalability of λ dynamics to perturbations at many sites; however, the size of chemical space that can be explored at each individual site has previously been limited to fewer than ten substituents.
View Article and Find Full Text PDF