Publications by authors named "Samad Ibitokou"

Vaccines to persistent parasite infections have been challenging, and current iterations lack long-term protection. Cytomegalovirus (CMV) chronic vaccine vectors drive protection against SIV, tuberculosis and liver-stage malaria correlated with antigen-specific CD8 T cells with a Tem phenotype. This phenotype is likely driven by a combination of antigen-specific and innate adjuvanting effects of the vector, though these mechanisms are less well understood.

View Article and Find Full Text PDF

CD4 T cells are required, along with antibodies, for complete protection from blood-stage infection with Plasmodium spp., which cause malaria. Without continuous exposure, as on emigration of people from endemic areas, protection from malaria decays.

View Article and Find Full Text PDF

Malaria during pregnancy is a major cause of maternal morbidity as well as fetal and neonatal mortality. Previous studies, including our own, suggested that placental and peripheral cytokine and chemokine levels measured at delivery can be used as biomarkers for pregnancy outcomes. However, the timing of malaria infection during pregnancy matters, and these studies do not address the effect of different cytokines in peripheral blood plasma samples taken at early and midpregnancy and at delivery.

View Article and Find Full Text PDF

Malaria-associated bacteremia accounts for up to one-third of deaths from severe malaria, and non-typhoidal Salmonella (NTS) has been reported as a major complication of severe malarial infection. Patients who develop NTS bacteremia during Plasmodium infection show higher mortality rates than individuals with malaria alone. Systemic bacteremia can be caused by a wound or translocation from epithelial or endothelial sites.

View Article and Find Full Text PDF

Protection at the peak of Plasmodium chabaudi blood-stage malaria infection is provided by CD4 T cells. We have shown that an increase in Th1 cells also correlates with protection during the persistent phase of malaria; however, it is unclear how these T cells are maintained. Persistent malaria infection promotes protection and generates both effector T cells (Teff), and effector memory T cells (Tem).

View Article and Find Full Text PDF

Understanding the mechanisms of CD4 memory T cell (Tmem) differentiation in malaria is critical for vaccine development. However, the metabolic regulation of CD4 Tmem differentiation is not clear, particularly in persistent infections. In this study, we investigated the role of fatty acid synthesis (FAS) in Tmem development in chronic mouse malaria infection.

View Article and Find Full Text PDF

Background: Current knowledge of human immunological responses to pregnancy-associated malaria-specific Plasmodium falciparum protein VAR2CSA concerns almost exclusively B cell-driven antibody-mediated activity. Knowledge of VAR2CSA-specific T cell-mediated activity is minimal by comparison, with only a single published report of a study investigating VAR2CSA-derived peptide-specific T cell responses. The study described here represents an attempt to redress this balance.

View Article and Find Full Text PDF

Maternal parasitoses modulate fetal immune development, manifesting as altered cellular immunological activity in cord blood that may be linked to enhanced susceptibility to infections in early life. Plasmodium falciparum typifies such infections, with distinct placental infection-related changes in cord blood exemplified by expanded populations of parasite antigen-specific regulatory T cells. Here we addressed whether such early-onset cellular immunological alterations persist through infancy.

View Article and Find Full Text PDF

We investigated the circulating plasma levels of Th1- (Interleukin-2 [IL-2], tumor necrosis factor-α [TNF-α], interferon-gamma [IFN-γ]) and Th2-type (IL-4, IL-5, IL-10) cytokines in human immunodeficiency virus (HIV)-infected pregnant women living in a malaria-endemic area. We analyzed samples from 200 pregnant women included in the prevention of pregnancy-associated malaria in HIV-infected women: cotrimoxazole prophylaxis versus mefloquine (PACOME) clinical trial who were followed until delivery. Cytokine concentrations were measured by flow cytometry-based multiplex bead array.

View Article and Find Full Text PDF

CD4 T cells orchestrate immunity against blood-stage malaria. However, a major challenge in designing vaccines to the disease is poor understanding of the requirements for the generation of protective memory T cells (Tmem) from responding effector T cells (Teff) in chronic parasite infection. In this study, we use a transgenic mouse model with T cells specific for the merozoite surface protein (MSP)-1 of Plasmodium chabaudi to show that activated T cells generate three distinct Teff subsets with progressive activation phenotypes.

View Article and Find Full Text PDF

Pregnancy-associated malaria (PAM) can lead to severe complications for both mother and baby. Certain placental cytokine/chemokine profiles have been shown to reflect poor pregnancy outcomes, including maternal anemia and low birth weight. In intervillous plasma samples from 400 Beninese women living in an area where Plasmodium falciparum is endemic, we quantified 16 cytokines/chemokines.

View Article and Find Full Text PDF

The immunological consequences of pregnancy-associated malaria (PAM) due to Plasmodium falciparum have been extensively investigated in cross-sectional studies conducted at delivery, but there have been very few longitudinal studies of changes due to PAM during pregnancy. We conducted a prospective study in Benin to investigate the changes associated with PAM in groups of 131 and 111 women at inclusion in the second trimester and at delivery, respectively. Infected women were identified by standard microscopic examinations of blood smears and by quantitative PCR (qPCR) assays and were matched to uninfected control women by age, gestational age, and gravidity.

View Article and Find Full Text PDF

Background: Infants of mothers with placental Plasmodium falciparum infections at delivery are themselves more susceptible to malaria attacks or to infection in early life.

Methodology/ Principal Findings: To assess the impact of either the timing or the number of pregnancy-associated malaria (PAM) infections on the incidence of parasitemia or malaria attacks in infancy, we followed 218 mothers through pregnancy (monthly visits) up to delivery and their infants from birth to 12 months of age (fortnightly visits), collecting detailed clinical and parasitological data. After adjustment on location, mother's age, birth season, bed net use, and placental malaria, infants born to a mother with PAM during the third trimester of pregnancy had a significantly increased risk of infection (OR [95% CI]: 4.

View Article and Find Full Text PDF

Protection from infections in early life relies extensively on innate immunity, but it is unknown whether and how maternal infections modulate infants' innate immune responses, thereby altering susceptibility to infections. Plasmodium falciparum causes pregnancy-associated malaria (PAM), and epidemiological studies have shown that PAM enhances infants' susceptibility to infection with P. falciparum.

View Article and Find Full Text PDF

Gestational age-related changes in the cellular composition of peripheral blood have not been described in sub-Saharan African settings. We conducted longitudinal cohort studies in Beninese and Tanzanian mothers with quantification of peripheral blood mononuclear cell-types ex vivo using flow cytometry. Between the second trimester and delivery the frequency of CD4(+) T cells declined significantly, contrasting with a non-significant increase in CD8(+) T cells, but no changes in T-regulatory, NK or NKT cell frequencies.

View Article and Find Full Text PDF

Sequestration of Plasmodium falciparum-infected erythrocytes in placental intervillous spaces causes inflammation and pathology. Knowledge of the profiles of immune cells associated with the physiopathology of pregnancy-associated malaria (PAM) is scarce. We conducted a longitudinal, prospective study, both in Benin and Tanzania, including ∼1000 pregnant women in each site with systematic follow-up at scheduled antenatal visits until delivery.

View Article and Find Full Text PDF

In pregnant women, Plasmodium falciparum infections are an important cause of maternal morbidity as well as fetal and neonatal mortality. Erythrocytes infected by these malaria-causing parasites accumulate through adhesive interactions in placental intervillous spaces, thus evading detection in peripheral blood smears. Sequestered infected erythrocytes induce inflammation, offering the possibility of detecting inflammatory mediators in peripheral blood that could act as biomarkers of placental infection.

View Article and Find Full Text PDF

In areas where Plasmodium falciparum is endemic, pregnancy is associated with accumulation of infected red blood cells (RBCs) in the placenta, a condition referred to as placental malaria (PM). Infants born to PM-positive mothers are at an increased risk of malaria, which is putatively related to the transplacental passage of parasite-derived antigens, with consequent tolerization of the fetal immune system. Here we addressed the impact of PM on the regulation of neonatal T cell responses.

View Article and Find Full Text PDF

Background: Malaria in pregnancy is associated with immunological abnormalities in the newborns, such as hampered T-helper 1 responses and increased T-regulatory responses, while the effect of maternal Plasmodium falciparum infection on foetal innate immunity is still controversial.

Materials And Methods: The immunophenotype and cytokine release by dendritic cells (DC) and monocytes were evaluated in cord blood from 59 Beninese women with or without malaria infection by using flow cytometry.

Results: Accumulation of malaria pigment in placenta was associated with a partial maturation of cord blood myeloid and plasmacytoid DC, as reflected by an up-regulated expression of the major histocompatibility complex class II molecules, but not CD86 molecules.

View Article and Find Full Text PDF