All T1-weighted images are built upon one of two fundamental pulse sequences, spin-echo and gradient echo, each of which has distinct signal characteristics and clinical applications. Moreover, within each broadly defined category of T1-weighting, acquisition parameters can be modified to affect image quality, contrast, and scan duration; each tailored sequence has unique advantages, drawbacks, clinical indications, and potential artifacts. In this review, we describe key features that distinguish different types of T1-weighted sequences and discuss the utility of each sequence for specific clinical settings, including neuro-oncology, vasculopathy, and pediatric neuroradiology.
View Article and Find Full Text PDFOur laboratory recently reported that induction of the SOS response, triggered by SOS-inducing drugs, was accompanied by a large release of DNA from enteric bacteria. The SOS response release had not previously been reported to include release of extracellular DNA from bacterial cells. We followed up on those observations in this current study and found that not just double-stranded DNA was being released, but also single-stranded DNA, RNA, and protein.
View Article and Find Full Text PDFUnlabelled: ERCC1, RRM1 and TS1 are reportedly linked to chemotherapy resistance in lung and other cancers. However, there are currently no studies reporting the relationship between these genes and clinical parameters in leiomyosarcomas.
Method: This study investigated the expression pattern of ERCC1, RRM1 and TS1 in forty-four leiomyosarcoma samples by the use of tissue microarray (TMA), immunofluorescence and AQUA methods.
This study constitutes a demonstration of the biological route to controlled nano-fabrication via modular multi-functional inorganic-binding peptides. Specifically, we use gold- and silica-binding peptide sequences, fused into a single molecule via a structural peptide spacer, to assemble pre-synthesized gold nanoparticles on silica surface, as well as to synthesize nanometallic particles in situ on the peptide-patterned regions. The resulting film-like gold nanoparticle arrays with controlled spatial organization are characterized by various microscopy and spectroscopy techniques.
View Article and Find Full Text PDFIn this study, we demonstrate how the vertical morphology of bulk heterojunction solar cells, with an active layer consisting of self-assembled poly(3-hexylthiophene) (P3HT) nanowires and phenyl-C(61)-butyric acid methyl ester (PCBM), can be beneficially influenced. Most device fabrication routes using similar materials employ an annealing step to influence active layer morphology, but this process can create an unfavorable phase migration where P3HT is driven toward the top of the active layer. In contrast, we demonstrate devices that exhibit an increase in relative fullerene concentration at the top of the active layer by introducing the donor phase as a solid nanowire in the active layer solution and altering the pre-spin drying time.
View Article and Find Full Text PDF