Publications by authors named "Sam Y Hong"

Rapadocin is a novel rapamycin-inspired polyketide-tetrapeptide hybrid macrocycle that possesses highly potent and isoform-specific inhibitory activity against the human equilibrative nucleoside transporter 1 (hENT1). Rapadocin contains an epimerizable chiral center in phenylglycine and an olefin group, and can thus exist as a mixture of four stereoisomers. Herein, we report the first total synthesis of the four stereoisomers of rapadocin using two different synthetic strategies and the assignment of their structures.

View Article and Find Full Text PDF

Glucose transporters play an essential role in cancer cell proliferation and survival and have been pursued as promising cancer drug targets. Using microarrays of a library of new macrocycles known as rapafucins, which were inspired by the natural product rapamycin, we screened for new inhibitors of GLUT1. We identified multiple hits from the rapafucin 3D microarray and confirmed one hit as a bona fide GLUT1 ligand, which we named rapaglutin A (RgA).

View Article and Find Full Text PDF

Rapamycin and FK506 are macrocyclic natural products with an extraordinary mode of action, in which they form binary complexes with FK506-binding protein (FKBP) through a shared FKBP-binding domain before forming ternary complexes with their respective targets, mechanistic target of rapamycin (mTOR) and calcineurin, respectively. Inspired by this, we sought to build a rapamycin-like macromolecule library to target new cellular proteins by replacing the effector domain of rapamycin with a combinatorial library of oligopeptides. We developed a robust macrocyclization method using ring-closing metathesis and synthesized a 45,000-compound library of hybrid macrocycles (named rapafucins) using optimized FKBP-binding domains.

View Article and Find Full Text PDF

The antifungal drug itraconazole was recently found to exhibit potent antiangiogenic activity and has since been repurposed as an investigational anticancer agent. Itraconazole has been shown to exert its antiangiogenic activity through inhibition of the mTOR signaling pathway, but the molecular mechanism of action was unknown. We recently identified the mitochondrial protein VDAC1 as a target of itraconazole and a mediator of its activation of AMPK, an upstream regulator of mTOR.

View Article and Find Full Text PDF

Improved therapies are needed for nonsmall cell lung cancer. Diazeniumdiolate-based nitric oxide (NO)-releasing prodrugs are a growing class of promising NO-based therapeutics. Recently, we have shown that O(2)-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate (JS-K, 1) is effective against nonsmall cell lung cancer (NSCLC) cells in culture and in vivo.

View Article and Find Full Text PDF

Arsenic is a cancer chemotherapeutic but hepatotoxicity can be a limiting side effect. O(2)-vinyl 1-[2-(carboxylato)pyrrolidin-1-yl]diazen-1-ium-1,2-diolate (V-PROLI/NO) is a nitric oxide (NO) donor prodrug and metabolized by liver cytochromes P450 (CYP450) to release NO. The effects of V-PROLI/NO pretreatment on the toxicity of arsenic (as NaAsO(2)) were studied in a rat liver cell line (TRL 1215).

View Article and Find Full Text PDF

V-PYRRO/NO is a well studied nitric oxide (NO) prodrug which has been shown to protect human liver cells from arsenic, acetaminophen, and other toxic assaults in vivo. Its proline-based analogue, V-PROLI/NO, was designed to be a more biocompatible form that decomposes to the naturally occurring metabolites of proline, NO, and glycolaldehyde. Like V-PYRRO/NO, this cytochrome P450-activated prodrug was previously assumed to passively diffuse through the cellular membrane.

View Article and Find Full Text PDF

The use of Cu(I)-catalyzed "click" reactions of alkyne-substituted diazeniumdiolate prodrugs with bis- and tetrakis-azido compounds is described. The "click" reaction for the bis-azide using CuSO(4)/Na-ascorbate predominantly gave the expected bis-triazole. However, CuI/diisopropylethylamine predominantly gave uncommon triazolo-triazole products as a result of oxidative coupling.

View Article and Find Full Text PDF

We report the stabilization of the nitric oxide (NO) prodrugs and anticancer lead compounds, PABA/NO (O(2)-{2,4-dinitro-5-[4-(N-methylamino)benzoyloxy]phenyl} 1-(N,N-dimethylamino)diazen-1-ium-1,2-diolate) and "Double JS-K" 1,5-bis-{1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diol-2-ato}-2,4-dinitrobenzene, through their incorporation into polymer-protected nanoparticles. The prodrugs were formulated in block copolymer-stabilized nanoparticles with sizes from 220 to 450 nm by a novel rapid precipitation process. The block copolymers, with polyethylene glycol (PEG) soluble blocks, provide a steric barrier against NO prodrug activation by glutathione.

View Article and Find Full Text PDF

GlcNAc-PROLI/NO prodrugs that are activated by N-acetylglucosaminidase to release nitric oxide (NO) are described. A classical acid-amine coupling is used to bifunctionalize these PROLI/NO prodrugs, which on activation generate up to 4 mol of NO, a peptide residue, and an N-acetylglucosamine residue. Many of the prodrugs synthesized are efficient sources of intracellular NO.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: