Publications by authors named "Sam Tomlinson"

Food systems can negatively impact health outcomes through unhealthy diets and indirectly through ammonia emissions originating from agricultural production, which contribute to air pollution and consequently cardiovascular and respiratory health outcomes. In the UK, ammonia emissions from agriculture have not declined in the same way as other air pollutants in recent years. We applied a novel integrated modelling framework to assess the health impacts from six ammonia reduction scenarios to 2030: two agriculture scenarios - a "Current trends" scenario projecting current mitigation measures to reflect a low ambition future, and "High ambition mitigation" based on measures included in the Climate Change Committee's Balanced Pathway to Net Zero; three dietary scenarios - a "Business as usual" based on past trajectories, "Fiscal" applying 20% tax on meat and dairy and 20% subsidy on fruit and vegetables, and "Innovation" applying a 30% switch to plant-based alternatives; one combination of "High ambition mitigation" and "Innovation".

View Article and Find Full Text PDF

Background: Living in areas with high air pollution concentrations is associated with all-cause and cause-specific mortality. Exposure in sensitive developmental periods might be long-lasting but studies with very long follow-up are rare, and mediating pathways between early life exposure and life-course mortality are not fully understood.

Methods: Data were drawn from the Scottish Longitudinal Study Birth Cohort of 1936, a representative record-linkage study comprising 5% of the Scottish population born in 1936.

View Article and Find Full Text PDF

Peatlands play an important role in modulating the climate, mainly through sequestration of carbon dioxide into peat carbon, which depends on the availability of reactive nitrogen (Nr) to mosses. Atmospheric Nr deposition in the UK has been above the critical load for functional and structural changes to peatland mosses, thus threatening to accelerate their succession by vascular plants and increasing the possibility of Nr export to downstream ecosystems. The N balance of peatlands has received comparatively little attention, mainly due to the difficulty in measuring gaseous N losses as well as the Nr inputs due to biological nitrogen fixation (BNF).

View Article and Find Full Text PDF

Estimation of the impacts of atmospheric nitrogen (N) deposition on ecosystems and biodiversity is a research imperative. Analyses of large-scale spatial gradients, where an observed response is correlated with measured or modelled deposition, have been an important source of evidence. A number of problems beset this approach.

View Article and Find Full Text PDF

Background: Air pollution has been consistently linked with dementia and cognitive decline. However, it is unclear whether risk is accumulated through long-term exposure or whether there are sensitive/critical periods. A key barrier to clarifying this relationship is the dearth of historical air pollution data.

View Article and Find Full Text PDF

Nitrogen (N) deposition poses a severe risk to global terrestrial ecosystems, and managing this threat is an important focus for air pollution science and policy. To understand and manage the impacts of N deposition, we need metrics which accurately reflect N deposition pressure on the environment, and are responsive to changes in both N deposition and its impacts over time. In the UK, the metric typically used is a measure of total N deposition over 1-3 years, despite evidence that N accumulates in many ecosystems and impacts from low-level exposure can take considerable time to develop.

View Article and Find Full Text PDF

Nutrient emissions in human waste and wastewater effluent fluxes from domestic sources are quantified for the UK over the period 1800-2010 based on population data from UK Census returns. The most important drivers of change have been the introduction of the water closet (flush toilet) along with population growth, urbanization, connection to sewer, improvements in wastewater treatment and use of phosphorus in detergents. In 1800, the population of the UK was about 12 million and estimated emissions in human waste were 37kt N, 6.

View Article and Find Full Text PDF