Extended-duration human spaceflight necessitates a better understanding of the physiological impacts of microgravity. While the ground-based microgravity simulations identified low intensity vibration (LIV) as a possible countermeasure, how cells may respond to LIV under real microgravity remain unexplored. In this way, adaptation of LIV bioreactors for space remains limited, resulting in a significant gap in microgravity research.
View Article and Find Full Text PDFThe advent of extended-duration human spaceflight demands a better comprehension of the physiological impacts of microgravity. One primary concern is the adverse impact on the musculoskeletal system, including muscle atrophy and bone density reduction. Ground-based microgravity simulations have provided insights, with vibrational bioreactors emerging as potential mitigators of these negative effects.
View Article and Find Full Text PDFThe cold neutron imaging and diffraction instrument IMAT, at the second target station of the pulsed neutron and muon source ISIS, is used to investigate bulk mosaicity within as-cast single crystal CMSX-4 and CMSX-10 Ni-base superalloys. Within this study, neutron transmission spectrum is recorded by each pixel within the microchannel plate image detector. The movement of the lowest transmission wavelength within a specified Bragg-dip for each pixel is tracked.
View Article and Find Full Text PDFBackground: There has been a resurgence of skateboarding, rollerblading and BMX riding in recent years and in response dedicated skateparks have opened in many cities across the UK. It is acknowledged that these sports are associated with risk of injury and it is recommended that participants wear protective clothing.
Objective: We aimed to determine if the opening of a skatepark near our hospital had any effect on the number of skatepark related injuries attending the emergency department and to describe the types of injuries sustained.