Object: Axonal regeneration may be hindered following spinal cord injury (SCI) by a limited immune response and insufficient macrophage recruitment. This limitation has been partially surmounted in small-mammal models of SCI by implanting activated autologous macrophages (AAMs). The authors sought to replicate these results in a canine model of partial SCI.
View Article and Find Full Text PDFHippocampal gamma oscillations, as a form of neuronal network synchronization, are speculated to be associated with learning, memory and attention. Nicotinic acetylcholine receptor alpha7 subtypes (alpha7-nAChRs) are highly expressed in hippocampal neurons and play important roles in modulating neuronal function, synaptic plasticity, learning and memory. However, little is known about the role of alpha7-nAChRs in hippocampal gamma oscillations.
View Article and Find Full Text PDFPurpose: We sought to determine whether cooling brain tissue from 34 to 21 degrees C could abolish tetany-induced neuronal network synchronization (gamma oscillations) without blocking normal synaptic transmission.
Methods: Intracellular and extracellular electrodes recorded activity in transverse hippocampal slices (450-500 microm) from Sprague-Dawley male rats, maintained in an air-fluid interface chamber. Gamma oscillations were evoked by afferent stimulation at 100 Hz for 200 ms.