Adipose models have been applied to mechanistic studies of metabolic diseases (such as diabetes) and the subsequent discovery of new therapeutics. However, typical models are either insufficiently complex (2D cell cultures) or expensive and labor intensive (mice/in vivo). To bridge the gap between these models and in order to better inform pre-clinical studies we have developed a drug-responsive 3D model of white adipose tissue (WAT).
View Article and Find Full Text PDFWe have created a 4 × 4 droplet bilayer array comprising light-activatable aqueous droplet bio-pixels. Aqueous droplets containing bacteriorhodopsin (bR), a light-driven proton pump, were arranged on a common hydrogel surface in lipid-containing oil. A separate lipid bilayer formed at the interface between each droplet and the hydrogel; each bilayer then incorporated bR.
View Article and Find Full Text PDFWe have previously used three-dimensional (3D) printing to prepare tissue-like materials in which picoliter aqueous compartments are separated by lipid bilayers. These printed droplets are elaborated into synthetic cells by using a tightly regulated in vitro transcription/translation system. A light-activated DNA promoter has been developed that can be used to turn on the expression of any gene within the synthetic cells.
View Article and Find Full Text PDFWe present a new approach for the directed delivery of biomolecular payloads to individual cells with high spatial precision. This was accomplished active sequestration of proteins, oligonucleotides or molecular dyes into coacervate microdroplets, which were then delivered to specific regions of stem cell membranes using a dynamic holographic assembler, resulting in spontaneous coacervate microdroplet-membrane fusion. The facile preparation, high sequestration efficiency and inherent membrane affinity of the microdroplets make this novel "cell paintballing" technology a highly advantageous option for spatially-directed cell functionalization, with potential applications in single cell stimulation, transfection and differentiation.
View Article and Find Full Text PDFThe fabrication of enzymatically active, semi-permeable bio-inorganic protocells capable of self-assembling a cytoskeletal-like interior and undergoing small-molecule dephosphorylation reactions is described. Reversible disassembly of an amino acid-derived supramolecular hydrogel within the internalized reaction space is used to tune the enzymatic activity of the nanoparticle-bounded inorganic compartments.
View Article and Find Full Text PDF