Publications by authors named "Sam London"

Spatial perception in echoic environments is influenced by recent acoustic history. For instance, echo suppression becomes more effective or "builds up" with repeated exposure to echoes having a consistent acoustic relationship to a temporally leading sound. Four experiments were conducted to investigate how buildup is affected by prior exposure to unpaired lead-alone or lag-alone click trains.

View Article and Find Full Text PDF

Auditory spatial perception plays a critical role in day-to-day communication. For instance, listeners utilize acoustic spatial information to segregate individual talkers into distinct auditory "streams" to improve speech intelligibility. However, spatial localization is an exceedingly difficult task in everyday listening environments with numerous distracting echoes from nearby surfaces, such as walls.

View Article and Find Full Text PDF

Communication and navigation in real environments rely heavily on the ability to distinguish objects in acoustic space. However, auditory spatial information is often corrupted by conflicting cues and noise such as acoustic reflections. Fortunately the brain can apply mechanisms at multiple levels to emphasize target information and mitigate such interference.

View Article and Find Full Text PDF

Locating sounds in realistic scenes is challenging because of distracting echoes and coarse spatial acoustic estimates. Fortunately, listeners can improve performance through several compensatory mechanisms. For instance, their brains perceptually suppress short latency (1-10 ms) echoes by constructing a representation of the acoustic environment in a process called the precedence effect.

View Article and Find Full Text PDF