Publications by authors named "Sam J Small"

Technological advancements in fluorescence flow cytometry and an ever-expanding understanding of the complexity of the immune system have led to the development of large flow cytometry panels, reaching up to 40 markers at the single-cell level. Full spectrum flow cytometry, which measures the full emission range of all the fluorophores present in the panel instead of only the emission peaks, is now routinely used in laboratories around the world, and the demand for this technology is rapidly increasing. With the ability to use larger and more complex staining panels, optimized protocols are vital for achieving the best panel design, panel optimization, and high-dimensional data analysis outcomes.

View Article and Find Full Text PDF

Technological advancements in fluorescence flow cytometry and an ever-expanding understanding of the complexity of the immune system have led to the development of large flow cytometry panels reaching up to 43 colors at the single-cell level. However, as panel size and complexity increase, so too does the detail involved in designing and optimizing successful high-quality panels fit for downstream high-dimensional data analysis. In contrast to conventional flow cytometers, full-spectrum flow cytometers measure the entire emission spectrum of each fluorophore across all lasers.

View Article and Find Full Text PDF

Technological advances in fluorescence flow cytometry and an ever-expanding understanding of the complexity of the immune system have led to the development of large (20+ parameters) flow cytometry panels. However, as panel complexity and size increase, so does the difficulty involved in designing a high-quality panel, accessing the instrumentation capable of accommodating large numbers of parameters, and analyzing such high-dimensional data. A recent advancement is spectral flow cytometry, which in contrast to conventional flow cytometry distinguishes the full emission spectrum of each fluorophore across all lasers, rather than identifying only the peak of emission.

View Article and Find Full Text PDF