Aims: To test whether 3,4-methylenedioxymethamphetamine (MDMA, "Ecstasy") abuse might increase the susceptibility, or alter the immune response, to murine gammaherpesvirus 68 (HV-68) and/or bacterial lipopolysaccharide.
Methods: Groups of experimental and control mice were subjected to three day binges of MDMA, and the effect of this drug abuse on acute and latent HV-68 viral burden were assessed. In vitro and in vivo studies were also performed to assess the MDMA effect on IL-27 expression in virally infected or LPS-exposed macrophages and dendritic cells, and latently infected animals, exposed to this drug of abuse.
Study Objective: To determine the sensitivity of dysphagia screening by emergency physicians on acute stroke patients.
Methods: To develop a 2-tiered dysphagia screen and performed it on a convenience sample of acute stroke patients. Tier 1 examined voice quality, swallowing complaints, facial asymmetry, and aphasia.
While Ecstasy (3,4-methylenedioxymethamphetamine, MDMA) has been shown to modulate immune responses, no studies have addressed drug-induced alterations to viral infection. In this study, bone marrow-derived macrophages were exposed to MDMA, then infected with murine gammaherpesvirus-68, and the expression of monokines assessed. MDMA-induced reductions in virus-stimulated monokine mRNA expression were observed in a dose-dependent manner.
View Article and Find Full Text PDFTrace amines such as tyramine, octopamine and beta-phenylethylamine bind with high affinity to the mammalian trace amine-associated receptor 1 (Taar1), potentially activating G-proteins in the synaptic membranes of target neurons. Recently there has been significant interest in Taar1, since this receptor can bind certain psychoactive drugs of abuse such as Ecstasy (3,4-methylenedioxymethamphetamine). Surprisingly, Ecstasy has been shown to alter responses of immune cells, and we questioned whether Taar receptors might be responsible for this effect.
View Article and Find Full Text PDF