Respiratory syncytial virus (RSV) is a major cause of pneumonia and wheezing in infants and the elderly, but to date there is no licensed vaccine. We developed a gold nanorod construct that displayed the major protective antigen of the virus, the fusion protein (F). Nanorods conjugated to RSV F were formulated as a candidate vaccine preparation by covalent attachment of viral protein using a layer-by-layer approach.
View Article and Find Full Text PDFControlled dispersion of therapeutic agents within liquid- and gel-filled cavities represents a barrier to treatment of some cancers and other pathological states. Interstitial delivery is compromised by the poor mobility of macromolecules and larger nanoscale structures. We developed an in vitro system to quantify the suitability of superparamagnetic nanoparticles (SPM NPs) as a site-specific therapeutic vehicle for delivery through fluid- and gel-based systems.
View Article and Find Full Text PDFSteric barriers such as collagen I sharply limit interstitial delivery of macromolecular and nanoparticle (NP) based therapeutic agents. Collagenase-linked superparamagnetic NPs overcame these barriers and moved through in vitro extracellular matrix (ECM) at 90 microm h(-1), a rate similar to invasive cells, under the influence of a magnetic field. NP migration in ECM diminished linearly over 5 days.
View Article and Find Full Text PDF