To identify drivers of malignancy in human pancreatic ductal adenocarcinoma (PDAC), we performed regulatory network analysis on a large collection of expression profiles from laser capture microdissected samples of PDAC and benign precursors. We discovered that BMAL2 plays a role in the initiation, progression, post resection survival, and KRAS activity in PDAC. Functional analysis of BMAL2 target genes led us to hypothesize that it plays a role in regulating the response to hypoxia, a critical but poorly understood feature of PDAC physiology.
View Article and Find Full Text PDFMutations in the BRCA1 tumor suppressor gene, such as 5382insC (BRCA1insC), give carriers an increased risk for breast, ovarian, prostate, and pancreatic cancers. We have previously reported that, in mice, Brca1 deficiency in the hematopoietic system leads to pancytopenia and, as a result, early lethality. We explored the cellular consequences of Brca1-null and BRCA1insC alleles in combination with Trp53 deficiency in the murine hematopoietic system.
View Article and Find Full Text PDFBoth BRCA1 and CREBBP are tumor suppressor genes that are important for hematopoiesis. We have previously shown that mouse Brca1 is essential for hematopoietic stem cell (HSC) viability. In contrast to Brca1 deficiency, which results in pancytopenia, we report here that Crebbp deficiency results in myeloproliferation associated with an increase of splenic HSCs as well as a lethal systemic inflammatory disorder (LD50 = 86 days).
View Article and Find Full Text PDFObjective: Pancreatic ductal adenocarcinoma (PDA) has among the highest stromal fractions of any cancer and this has attempts at expression-based molecular classification. The goal of this work is to profile purified samples of human PDA epithelium and stroma and examine their respective contributions to gene expression in bulk PDA samples.
Design: We used laser capture microdissection (LCM) and RNA sequencing to profile the expression of 60 matched pairs of human PDA malignant epithelium and stroma samples.
Deficiency of huntingtin-interacting protein 1 (Hip1) results in degenerative phenotypes. Here we generated a deficiency allele where a floxed transcriptional stop cassette and a human cDNA were knocked into intron 1 of the mouse locus. -mediated germ line excision of the stop cassette resulted in expression of HIP1 and rescue of the knockout phenotype.
View Article and Find Full Text PDFLiver X receptors (LXRα and LXRβ) are important regulators of cholesterol and lipid metabolism, and their activation has been shown to inhibit cardiovascular disease and reduce atherosclerosis in animal models. Small molecule agonists of LXR activity are therefore of great therapeutic interest. However, the finding that such agonists also promote hepatic lipogenesis has led to the idea that hepatic LXR activity is undesirable from a therapeutic perspective.
View Article and Find Full Text PDFWe have determined the cistrome and transcriptome for the nuclear receptor liver receptor homolog-1 (LRH-1) in exocrine pancreas. Chromatin immunoprecipitation (ChIP)-seq and RNA-seq analyses reveal that LRH-1 directly induces expression of genes encoding digestive enzymes and secretory and mitochondrial proteins. LRH-1 cooperates with the pancreas transcription factor 1-L complex (PTF1-L) in regulating exocrine pancreas-specific gene expression.
View Article and Find Full Text PDFTGR5 is a G protein-coupled bile acid receptor present in brown adipose tissue and intestine, where its agonism increases energy expenditure and lowers blood glucose. Thus, it is an attractive drug target for treating human metabolic disease. However, TGR5 is also highly expressed in gallbladder, where its functions are less well characterized.
View Article and Find Full Text PDFAlthough bile acids are crucial for the absorption of lipophilic nutrients in the intestine, they are cytotoxic at high concentrations and can cause liver damage and promote colorectal carcinogenesis. The farnesoid X receptor (FXR), which is activated by bile acids and abundantly expressed in enterohepatic tissues, plays a crucial role in maintaining bile acids at safe concentrations. Here, we show that FXR induces expression of Akr1b7 (aldo-keto reductase 1b7) in murine small intestine, colon, and liver by binding directly to a response element in the Akr1b7 promoter.
View Article and Find Full Text PDFBile acids are required for proper absorption of dietary lipids, including fat-soluble vitamins. Here, we show that the dietary vitamins A and D inhibit bile acid synthesis by repressing hepatic expression of the rate-limiting enzyme CYP7A1. Receptors for vitamin A and D induced expression of Fgf15, an intestine-derived hormone that acts on liver to inhibit Cyp7a1.
View Article and Find Full Text PDFMultiple transcription factors, including members of the nuclear receptor family, harbor one or more copies of a short regulatory motif that limits synergistic transactivation in a context-dependent manner. These synergy control (SC) motifs exert their effects by serving as sites for posttranslational modification by small ubiquitin-like modifier (SUMO) proteins. By analyzing the requirements for both synergy control and SUMOylation in the glucocorticoid receptor (GR), we find that an intact ligand-binding domain and an engaged DNA- binding domain dimerization interface are necessary for effective synergy control.
View Article and Find Full Text PDFThe cycle of gallbladder filling and emptying controls the flow of bile into the intestine for digestion. Here we show that fibroblast growth factor-15, a hormone made by the distal small intestine in response to bile acids, is required for gallbladder filling. These studies demonstrate that gallbladder filling is actively regulated by an endocrine pathway and suggest a postprandial timing mechanism that controls gallbladder motility.
View Article and Find Full Text PDFSmall ubiquitin-like modifier (SUMO) modification of sequence-specific transcription factors has profound regulatory consequences. By providing an intrinsic inhibitory function, SUMO isoforms can suppress transcriptional activation, particularly at promoters harboring multiple response elements. Through a comprehensive structure-function analysis, we have identified a single critical sector along the second beta sheet and the following alpha helix of SUMO2.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2003
Functional interactions between factors bound at multiple sites on DNA often lead to a synergistic or more-than-additive transcriptional response. We previously defined a class of peptide sequences termed synergy control motifs (SC motifs) that function in multiple regulators by selectively inhibiting synergistic activity driven from multiple but not single response elements. By studying the prototypic SC motifs of the glucocorticoid receptor, we show that SC motifs inhibit transcription per se both in cis and in trans, and that a requirement for multiple contacts with DNA renders them selective for compound response elements.
View Article and Find Full Text PDF