Contract research organizations and pharmaceutical firms have performed stability testing using one of two methods: storing in the freezer a single tube of matrix for each quality control concentration (Method 1), followed by aliquoting and analysis; and storing three tubes for each quality control concentration, followed by analysis (Method 2). This research project was conducted to determine if there were detectable differences between Method 1 and Method 2. Five model drugs were selected: teriflunomide (stable compound) and acetyl salicylic acid, simvastatin, tenofovir alafenamide and valganciclovir (stability concerns).
View Article and Find Full Text PDFWe previously concluded that 12 common excipients need not be qualitatively the same and quantitatively very similar to reference for Biopharmaceutics Classification System-based biowaivers. This conclusion for regulatory relief is based upon a series of bioequivalence studies in humans involving cimetidine and acyclovir. Limitations were also discussed.
View Article and Find Full Text PDFThe objective was to assess the impact of larger than conventional amounts of 14 commonly used excipients on Biopharmaceutics Classification System (BCS) class 3 drug absorption in humans. Cimetidine and acyclovir were used as model class 3 drugs across three separate four-way crossover bioequivalence (BE) studies (n = 24 each) in healthy human volunteers, denoted as study 1A, 1B, and 2. In study 1A and 1B, three capsule formulations of each drug were manufactured, collectively involving 14 common excipients.
View Article and Find Full Text PDFIn September 2013, the FDA released a draft revision of the Bioanalytical Method Validation (BMV) Guidance, which included a number of changes to the expectations for bioanalysis, most notably the inclusion of biomarker assays and data. To provide a forum for an open, inclusive discussion of the revised draft BMV Guidance, the AAPS and FDA once again collaborated to convene a two-and-a-half day workshop during early December 2013 in Baltimore, MD, USA. The resulting format embodied extensive open discussion and each thematic session included only brief, concise descriptions by Agency and industry representatives prior to opening the floor discussion.
View Article and Find Full Text PDF"For-cause" inspections are initiated during the review of bioequivalence (BE) data submitted to Abbreviated New Drug Applications when possible scientific misconduct and study irregularities are discovered. We investigated the common reasons for initiating "for-cause" inspections related to the clinical, analytical, and dissolution study sites associated with BE studies. This information may help the pharmaceutical industry to understand the root causes of compliance failures in BE studies and help them to improve compliance with FDA's regulations, thereby facilitating more rapid approval of safe and effective generic drugs.
View Article and Find Full Text PDFHighly variable (HV) drugs are defined as those for which within-subject variability (%CV) in bioequivalence (BE) measures is 30% or greater. Because of this high variability, studies designed to show whether generic HV drugs are bioequivalent to their corresponding HV reference drugs may need to enroll large numbers of subjects even when the products have no significant mean differences. To avoid unnecessary human testing, the US Food and Drug Administration's Office of Generic Drugs developed a reference-scaled average bioequivalence (RSABE) approach, whereby the BE acceptance limits are scaled to the variability of the reference product.
View Article and Find Full Text PDFBackground: In the US, manufacturers seeking approval to market a generic drug product must submit data demonstrating that the generic formulation provides the same rate and extent of absorption as (ie, is bioequivalent to) the innovator drug product. Thus, most orally administered generic drug products in the US are approved based on results of one or more clinical bioequivalence studies.
Objective: To evaluate how well the bioequivalence measures of generic drugs approved in the US over a 12-year period compare with those of their corresponding innovator counterparts.
Various approaches for evaluating the bioequivalence (BE) of highly variable drugs (CV > or = 30%) have been debated for many years. More recently, the FDA conducted research to evaluate one such approach: scaled average BE. A main objective of this study was to determine the impact of scaled average BE on study power, and compare it to the method commonly applied currently (average BE).
View Article and Find Full Text PDFOver the past decade, concerns have been expressed increasingly regarding the difficulty for highly variable drugs and drug products (%CV greater than 30) to meet the standard bioequivalence (BE) criteria using a reasonable number of study subjects. The topic has been discussed on numerous occasions at national and international meetings. Despite the lack of a universally accepted solution for the issue, regulatory agencies generally agree that an adjustment of the traditional BE limits for these drugs or products may be warranted to alleviate the resource burden of studying relatively large numbers of subjects in bioequivalence trials.
View Article and Find Full Text PDFPurpose: To develop a predictive population pharmacokinetic/ pharmacodynamic (PK/PD) model for repaglinide (REP), an oral hypoglycemic agent, using artificial neural networks (ANNs).
Methods: REP, glucose concentrations, and demographic data from a dose ranging Phase 2 trial were divided into a training set (70%) and a test set (30%). NeuroShell Predictor was used to create predictive PK and PK/PD models using population covariates: evaluate the relative significance of different covariates; and simulate the effect of covariates on the PK/PD of REP.