Publications by authors named "Sam Grimaldo"

Pancreatic ductal adenocarcinoma (PDAC) is one of the worst solid malignancies in regard to outcomes and metabolic dysfunction leading to cachexia. It is alarming that PDAC incidence rates continue to increase and warrant the need for innovative approaches to combat this disease. Due to its relatively slow progression (10-20 years), prevention strategies represent an effective means to improve outcomes.

View Article and Find Full Text PDF

Immune-based therapies induce durable remissions in subsets of patients across multiple malignancies. However, there is limited efficacy of immunotherapy in metastatic castrate-resistant prostate cancer (mCRPC), manifested by an enrichment of immunosuppressive (M2) tumor- associated macrophages (TAM) in the tumor immune microenvironment (TME). Therefore, therapeutic strategies to overcome TAM-mediated immunosuppression are critically needed in mCRPC.

View Article and Find Full Text PDF

The transcription factor Glioma-Associated Oncogene Homolog 1 (GLI1) is activated by sonic hedgehog (SHH) cascade and is an established driver of pancreatic ductal adenocarcinoma (PDAC). However, therapies targeting upstream hedgehog signaling have shown little to no efficacy in clinical trials. Here, we identify Mixed Lineage Kinase 3 (MLK3) as a druggable regulator of oncogenic GLI1.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) has extensive stromal involvement and remains one of the cancers with the highest mortality rates. Activin A has been implicated in colon cancer and its stroma but its role in the stroma of PDAC has not been elucidated. Activin A expression in cancer and stroma was assessed in human PDAC tissue microarrays (TMA).

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is notorious for its poor survival and resistance to conventional therapies. PI3K signaling is implicated in both disease initiation and progression, and specific inhibitors of selected PI3K p110 isoforms for managing solid tumors are emerging. We demonstrate that increased activation of PI3K signals cooperates with oncogenic Kras to promote aggressive PDAC in vivo.

View Article and Find Full Text PDF

Current therapies for pancreatic ductal adenocarcinoma (PDAC) only modestly impact survival and can be highly toxic. A greater understanding of the molecules regulating this disease is critical for identifying new drug targets and developing more effective therapies. The L6 family of proteins are known to be positive regulators of tumor growth and metastasis among various cancers.

View Article and Find Full Text PDF

The fibrotic reaction is a characteristic feature of human pancreatic ductal adenocarcinoma (PDAC) tumors. It is associated with activation and proliferation of pancreatic stellate cells (PSCs), which are key regulators of fibrosis in vivo. While there is increasing interest in the regulation of PD-L1 expression in cancer and immune cells, the expression and regulation of PD-L1 in other stromal cells, such as PSCs, has not been fully evaluated.

View Article and Find Full Text PDF