Active learning and peer instruction contribute to positive learning outcomes. We developed a 25-week, question-based program for first-year medical students (MS1). Senior students developed weekly question and answer sets.
View Article and Find Full Text PDFGlioblastoma (GBM) is an immunologically cold tumor, but several immunotherapy-based strategies show promise, including the administration of ex vivo expanded and activated cytotoxic gamma delta T cells. Cytotoxicity is partially mediated through interactions with natural killer group 2D ligands (NKG2DL) on tumor cells. We sought to determine whether the addition of the blood-brain barrier penetrant PARP inhibitor niraparib to the standard of care DNA alkylator temozolomide (TMZ) could upregulate NKG2DL, thereby improving immune cell recognition.
View Article and Find Full Text PDFOncolytic virotherapy or immunovirotherapy is a strategy that utilizes viruses to selectively infect and kill tumor cells while also stimulating an immune response against the tumor. Early clinical trials in both pediatric and adult patients using oncolytic herpes simplex viruses (oHSV) have demonstrated safety and promising efficacy; however, combinatorial strategies designed to enhance oncolysis while also promoting durable T-cell responses for sustaining disease remission are likely required. We hypothesized that combining the direct tumor cell killing and innate immune stimulation by oHSV with a vaccine that promotes T cell-mediated immunity may lead to more durable tumor regression.
View Article and Find Full Text PDFDrug repurposing is promising because approving a drug for a new indication requires fewer resources than approving a new drug. Signature reversion detects drug perturbations most inversely related to the disease-associated gene signature to identify drugs that may reverse that signature. We assessed the performance and biological relevance of three approaches for constructing disease-associated gene signatures (i.
View Article and Find Full Text PDFBackground: Brain tumors are the most common solid tumors and the leading cause of cancer-related deaths in children. Incidence in the USA has been on the rise for the last 2 decades. While therapeutic advances in diagnosis and treatment have improved survival and quality of life in many children, prognosis remains poor and current treatments have significant long-term sequelae.
View Article and Find Full Text PDFPurpose: Oncolytic virotherapy with herpes simplex virus-1 (HSV) has shown promise for the treatment of pediatric and adult brain tumors; however, completed and ongoing clinical trials have utilized intratumoral/peritumoral oncolytic HSV (oHSV) inoculation due to intraventricular/intrathecal toxicity concerns. Intratumoral delivery requires an invasive neurosurgical procedure, limits repeat injections, and precludes direct targeting of metastatic and leptomeningeal disease. To address these limitations, we determined causes of toxicity from intraventricular oHSV and established methods for mitigating toxicity to treat disseminated brain tumors in mice.
View Article and Find Full Text PDFGlioblastoma (GBM) is the most common primary adult intracranial malignancy and carries a dismal prognosis despite an aggressive multimodal treatment regimen that consists of surgical resection, radiation, and adjuvant chemotherapy. Radiographic evaluation, largely informed by magnetic resonance imaging (MRI), is a critical component of initial diagnosis, surgical planning, and post-treatment monitoring. However, conventional MRI does not provide information regarding tumor microvasculature, necrosis, or neoangiogenesis.
View Article and Find Full Text PDFMalignant brain tumors constitute nearly one-third of cancer diagnoses in children and have recently surpassed hematologic malignancies as the most lethal neoplasm in the pediatric population. Outcomes for children with brain tumors are unacceptably poor and current standards of care-surgical resection, chemotherapy, and radiation-are associated with significant long-term morbidity. Oncolytic virotherapy has emerged as a promising immunotherapy for the treatment of brain tumors.
View Article and Find Full Text PDFBrain tumors result in significant morbidity and mortality in both children and adults. Recent data indicate that immunotherapies may offer a survival benefit after standard of care has failed for malignant brain tumors. Modest results from several late phase clinical trials, however, underscore the need for more refined, comprehensive strategies that incorporate new mechanistic and pharmacologic knowledge.
View Article and Find Full Text PDFDiffusion tensor imaging (DTI) has been employed for over 2 decades to noninvasively quantify central nervous system diseases/injuries. However, DTI is an inadequate simplification of diffusion modeling in the presence of coexisting inflammation, edema and crossing nerve fibers. We employed a tissue phantom using fixed mouse trigeminal nerves coated with various amounts of agarose gel to mimic crossing fibers in the presence of vasogenic edema.
View Article and Find Full Text PDFPurpose: Glioblastoma (GBM) is one of the deadliest cancers with no cure. While conventional MRI has been widely adopted to examine GBM clinically, accurate neuroimaging assessment of tumor histopathology for improved diagnosis, surgical planning, and treatment evaluation remains an unmet need in the clinical management of GBMs.
Experimental Design: We employ a novel diffusion histology imaging (DHI) approach, combining diffusion basis spectrum imaging (DBSI) and machine learning, to detect, differentiate, and quantify areas of high cellularity, tumor necrosis, and tumor infiltration in GBM.
Proc Natl Acad Sci U S A
October 2018
Repetitive electrical activity produces microstructural alteration in myelinated axons, which may afford the opportunity to noninvasively monitor function of myelinated fibers in peripheral nervous system (PNS)/CNS pathways. Microstructural changes were assessed via two different magnetic-resonance-based approaches: diffusion fMRI and dynamic T spectroscopy in the ex vivo perfused bullfrog sciatic nerves. Using this robust, classical model as a platform for testing, we demonstrate that noninvasive diffusion fMRI, based on standard diffusion tensor imaging (DTI), can clearly localize the sites of axonal conduction blockage as might be encountered in neurotrauma or other lesion types.
View Article and Find Full Text PDFExpert Rev Endocrinol Metab
March 2018
Introduction: Gaucher disease, the autosomal recessive deficiency of the lysosomal enzyme glucocerebrosidase, is associated with wide phenotypic diversity including non-neuronopathic, acute neuronopathic, and chronic neuronopathic forms. Overlap between types can render definitive diagnoses difficult. However, differentiating between the different phenotypes is essential due to the vast differences in clinical outcomes and response to therapy.
View Article and Find Full Text PDF