Publications by authors named "Sam Day"

Article Synopsis
  • During light-induced somatic embryogenesis, phyB-Pfr inhibits Phytoglobin 2 (Pgb2), which normally elevates nitric oxide (NO), a critical signaling molecule.
  • The suppression of Pgb2 leads to increased NO levels, which in turn inhibits Phytochrome Interacting Factor 4 (PIF4), allowing for auxin-induced embryogenic tissue formation.
  • This study presents a model where the interactions between phyB, Pgb2, and NO regulate the transition from somatic to embryonic tissue in Arabidopsis under light conditions, highlighting the complex signaling required for embryogenesis in vitro.
View Article and Find Full Text PDF
Article Synopsis
  • Carbonic anhydrase IX (CAIX) helps regulate tissue pH by quickly converting carbon dioxide and bicarbonate; its activity was analyzed in colorectal tumors using advanced imaging techniques.
  • The study found that while CAIX overexpression led to lower extracellular pH, the enzyme's activity decreased because it functions less effectively in more acidic environments.
  • Adding bicarbonate to drinking water increased the tumor's pH and restored CAIX activity, indicating that CAIX expression rises in low pH conditions as a compensatory mechanism.
View Article and Find Full Text PDF

Dynamic nuclear polarization can be used to increase the sensitivity of solution state (13)C magnetic resonance spectroscopy by four orders of magnitude. We show here that [1-(13)C]glutamate can be polarized to 28%, representing a 35,000-fold increase in its sensitivity to detection at 9.4 T and 37°C.

View Article and Find Full Text PDF

We show here that hyperpolarized [1-(13) C]pyruvate can be used to detect treatment response in a glioma tumor model; a tumor type where detection of response with (18) fluoro-2-deoxyglucose, using positron emission tomography, is limited by the high background signals from normal brain tissue. (13) C chemical shift images acquired following intravenous injection of hyperpolarized [1-(13) C]pyruvate into rats with implanted C6 gliomas showed significant labeling of lactate within the tumors but comparatively low levels in surrounding brain.Labeled pyruvate was observed at high levels in blood vessels above the brain and from other major vessels elsewhere but was detected at only low levels in tumor and brain.

View Article and Find Full Text PDF

Measurements of the conversion of hyperpolarized [1-(13)C]pyruvate into lactate, in the reaction catalyzed by lactate dehydrogenase, have shown promise as a metabolic marker for the presence of disease and response to treatment. However, it is unclear whether this represents net flux of label from pyruvate to lactate or exchange of isotope between metabolites that are close to chemical equilibrium. Using saturation and inversion transfer experiments, we show that there is significant exchange of label between lactate and pyruvate in a murine lymphoma in vivo.

View Article and Find Full Text PDF

Tumor choline metabolites have potential for use as diagnostic indicators of breast cancer phenotype and can be non-invasively monitored in vivo by MRS. Extract studies have determined that the principle diagnostic component of these peaks is phosphocholine (PCho), the biosynthetic precursor to the membrane phospholipid, phosphatidylcholine (PtdCho). The ability to resolve and quantify PCho in vivo would improve the accuracy of this putative diagnostic tool.

View Article and Find Full Text PDF

Dynamic nuclear polarization (DNP) is an emerging technique for increasing the sensitivity of (13)C MR spectroscopy (MRS). [5-(13)C(1)]Glutamine was hyperpolarized using this technique by up to 5%, representing a 6000-fold increase in sensitivity. The conversion of hyperpolarized glutamine to glutamate by mitochondrial glutaminase was demonstrated using (13)C-MRS measurements in cultured human hepatoma cells (HepG2).

View Article and Find Full Text PDF

As alterations in tissue pH underlie many pathological processes, the capability to image tissue pH in the clinic could offer new ways of detecting disease and response to treatment. Dynamic nuclear polarization is an emerging technique for substantially increasing the sensitivity of magnetic resonance imaging experiments. Here we show that tissue pH can be imaged in vivo from the ratio of the signal intensities of hyperpolarized bicarbonate (H(13)CO(3)(-)) and (13)CO(2) following intravenous injection of hyperpolarized H(13)CO(3)(-).

View Article and Find Full Text PDF

Measurements of early tumor responses to therapy have been shown, in some cases, to predict treatment outcome. We show in lymphoma-bearing mice injected intravenously with hyperpolarized [1-(13)C]pyruvate that the lactate dehydrogenase-catalyzed flux of (13)C label between the carboxyl groups of pyruvate and lactate in the tumor can be measured using (13)C magnetic resonance spectroscopy and spectroscopic imaging, and that this flux is inhibited within 24 h of chemotherapy. The reduction in the measured flux after drug treatment and the induction of tumor cell death can be explained by loss of the coenzyme NAD(H) and decreases in concentrations of lactate and enzyme in the tumors.

View Article and Find Full Text PDF

Choline-containing compounds (CCCs) are elevated in breast cancer, and detected in vivo by the (1)H MRS total choline (tCho) resonance (3.25 ppm) and the (31)P MRS phosphomonoester (PME) resonance (3.8 ppm).

View Article and Find Full Text PDF

Numerous pre-clinical and clinical reports have demonstrated that the MRI-measured apparent diffusion coefficient of water (ADC) increases early in the response to a wide variety of anti-cancer therapies. It has been proposed that this increase in ADC generally results from an increase in the tumor extracellular volume fraction leading to a greater degree of unrestricted water motion. Furthermore, an increase in extracellular volume has been ascribed to the cell shrinkage that occurs early in the process of programmed cell death.

View Article and Find Full Text PDF