Publications by authors named "Sam Coveney"

Cardiac diffusion tensor imaging (cDTI) is highly prone to image corruption, yet robust-fitting methods are rarely used. Single voxel outlier detection (SVOD) can overlook corruptions that are visually obvious, perhaps causing reluctance to replace whole-image shot-rejection (SR) despite its own deficiencies. SVOD's deficiencies may be relatively unimportant: corrupted signals that are not statistical outliers may not be detrimental.

View Article and Find Full Text PDF

Purpose: This work reports for the first time on the implementation and application of cardiac diffusion-weighted MRI on a Connectom MR scanner with a maximum gradient strength of 300 mT/m. It evaluates the benefits of the increased gradient performance for the investigation of the myocardial microstructure.

Methods: Cardiac diffusion-weighted imaging (DWI) experiments were performed on 10 healthy volunteers using a spin-echo sequence with up to second- and third-order motion compensation ( and ) and , and 1000 (twice the commonly used on clinical scanners).

View Article and Find Full Text PDF

Purpose: This paper presents a hierarchical modeling approach for estimating cardiomyocyte major and minor diameters and intracellular volume fraction (ICV) using diffusion-weighted MRI (DWI) data in ex vivo mouse hearts.

Methods: DWI data were acquired on two healthy controls and two hearts 3 weeks post transverse aortic constriction (TAC) using a bespoke diffusion scheme with multiple diffusion times ( ), q-shells and diffusion encoding directions. Firstly, a bi-exponential tensor model was fitted separately at each diffusion time to disentangle the dependence on diffusion times from diffusion weightings, that is, b-values.

View Article and Find Full Text PDF

Background: Personalised computer models are increasingly used to diagnose cardiac arrhythmias and tailor treatment. Patient-specific models of the left atrium are often derived from pre-procedural imaging of anatomy and fibrosis. These images contain noise that can affect simulation predictions.

View Article and Find Full Text PDF

Models of electrical excitation and recovery in the heart have become increasingly detailed, but have yet to be used routinely in the clinical setting to guide personalized intervention in patients. One of the main challenges is calibrating models from the limited measurements that can be made in a patient during a standard clinical procedure. In this work, we propose a novel framework for the probabilistic calibration of electrophysiology parameters on the left atrium of the heart using local measurements of cardiac excitability.

View Article and Find Full Text PDF

Characterizing patient-specific atrial conduction properties is important for understanding arrhythmia drivers, for predicting potential arrhythmia pathways, and for personalising treatment approaches. One metric that characterizes the health of the myocardial substrate is atrial conduction velocity, which describes the speed and direction of propagation of the electrical wavefront through the myocardium. Atrial conduction velocity mapping algorithms are under continuous development in research laboratories and in industry.

View Article and Find Full Text PDF

Calibration of cardiac electrophysiology models is a fundamental aspect of model personalization for predicting the outcomes of cardiac therapies, simulation testing of device performance for a range of phenotypes, and for fundamental research into cardiac function. Restitution curves provide information on tissue function and can be measured using clinically feasible measurement protocols. We introduce novel "restitution curve emulators" as probabilistic models for performing model exploration, sensitivity analysis, and Bayesian calibration to noisy data.

View Article and Find Full Text PDF

In patients with atrial fibrillation, local activation time (LAT) maps are routinely used for characterizing patient pathophysiology. The gradient of LAT maps can be used to calculate conduction velocity (CV), which directly relates to material conductivity and may provide an important measure of atrial substrate properties. Including uncertainty in CV calculations would help with interpreting the reliability of these measurements.

View Article and Find Full Text PDF

Biophysically detailed cardiac cell models reconstruct the action potential and calcium dynamics of cardiac myocytes. They aim to capture the biophysics of current flow through ion channels, pumps, and exchangers in the cell membrane, and are highly detailed. However, the relationship between model parameters and model outputs is difficult to establish because the models are both complex and non-linear.

View Article and Find Full Text PDF

Patient-specific computational models of structure and function are increasingly being used to diagnose disease and predict how a patient will respond to therapy. Models of anatomy are often derived after segmentation of clinical images or from mapping systems which are affected by image artefacts, resolution and contrast. Quantifying the impact of uncertain anatomy on model predictions is important, as models are increasingly used in clinical practice where decisions need to be made regardless of image quality.

View Article and Find Full Text PDF

Objective: Local activation time (LAT) mapping of the atria is important for targeted treatment of atrial arrhythmias, but current methods do not interpolate on the atrial manifold and neglect uncertainties associated with LAT observations. In this paper, we describe novel methods to, first, quantify uncertainties in LAT arising from bipolar electrogram analysis and assignment of electrode recordings to the anatomical mesh, second, interpolate uncertain LAT measurements directly on left atrial manifolds to obtain complete probabilistic activation maps, and finally, interpolate LAT jointly across both the manifold and different S1-S2 pacing protocols.

Methods: A modified center of mass approach was used to process bipolar electrograms, yielding a LAT estimate and error distribution from the electrogram morphology.

View Article and Find Full Text PDF

Cardiac cell models are potentially valuable tools for applications such as quantitative safety pharmacology, but have many parameters. Action potentials in real cardiac cells also vary from beat to beat, and from one cell to another. Calibrating cardiac cell models to experimental observations is difficult, because the parameter space is large and high-dimensional.

View Article and Find Full Text PDF

Reduced blood flow in the coronary arteries can lead to damaged heart tissue (myocardial ischaemia). Although one method for detecting myocardial ischaemia involves changes in the ST segment of the electrocardiogram, the relationship between these changes and subendocardial ischaemia is not fully understood. In this study, we modelled ST-segment epicardial potentials in a slab model of cardiac ventricular tissue, with a central ischaemic region, using the bidomain model, which considers conduction longitudinal, transverse and normal to the cardiac fibres.

View Article and Find Full Text PDF

We introduce a model for thin films of multicomponent fluids that includes lateral and vertical phase separation, preferential component attraction at both surfaces, and surface roughening. We apply our model to thin films of binary polymer blends, and use simulations of different surface-blend interaction regimes to investigate pattern formation. We demonstrate that surface roughening couples to phase separation.

View Article and Find Full Text PDF

We use simulations of a binary polymer blend confined between selectively attracting walls to identify and explain the mechanism of lateral phase separation via a transient wetting layer. We first show that equilibrium phases in the film are described by one-dimensional phase equilibria in the vertical (depth) dimension, and demonstrate that effective boundary conditions imposed by the film walls pin the film profile at the walls. We then show that, prior to lateral phase separation, distortion of the interface in a transient wetting layer is coupled to lateral phase separation at the walls.

View Article and Find Full Text PDF

We show that lateral phase separation in polymer blend thin films can proceed via the formation of a transient wetting layer which breaks up to give a laterally segregated film. We show that the growth of lateral inhomogeneities at the walls in turn causes the distortion of the interface in the transient wetting layer. By addressing the 1D phase equilibria of a polymer blend thin film confined between selectively attracting walls, we show that the breakup of a transient wetting layer is due to wall-blend interactions; there are multiple values of the volume fraction at the walls which solve equilibrium boundary conditions.

View Article and Find Full Text PDF

We use a phase portrait approach to study the phase equilibria of a symmetric binary polymer blend confined between an attracting wall and a neutral wall. We find multiple solutions for this wall regime where only one solution exists for antisymmetric walls. We also argue that, when one wall is a free surface, roughening of the free surface upon lateral phase separation is expected, since thermodynamics alone implies that the coexisting phases should exist at different heights to minimise energy.

View Article and Find Full Text PDF