Publications by authors named "Salwan Butrus"

Mouse whisker somatosensory cortex (wS1) is a major model system to study the experience-dependent plasticity of cortical neuron physiology, morphology, and sensory coding. However, the role of sensory experience in regulating neuronal cell type development and gene expression in wS1 remains poorly understood. We assembled and annotated a transcriptomic atlas of wS1 during postnatal development comprising 45 molecularly distinct neuronal types that can be grouped into eight excitatory and four inhibitory neuron subclasses.

View Article and Find Full Text PDF

Unlabelled: How early sensory experience during "critical periods" of postnatal life affects the organization of the mammalian neocortex at the resolution of neuronal cell types is poorly understood. We previously reported that the functional and molecular profiles of layer 2/3 (L2/3) cell types in the primary visual cortex (V1) are vision-dependent (Tan et al., (4), 2020; Cheng et al.

View Article and Find Full Text PDF

We describe a computational workflow to analyze single-cell RNA-sequencing (scRNA-seq) profiles of axotomized retinal ganglion cells (RGCs) in mice. Our goal is to identify differences in the dynamics of survival among 46 molecularly defined RGC types together with molecular signatures that correlate with these differences. The data consists of scRNA-seq profiles of RGCs collected at six time points following optic nerve crush (ONC) (see companion chapter by Jacobi and Tran).

View Article and Find Full Text PDF

Rare CD4 T cells that contain HIV under antiretroviral therapy represent an important barrier to HIV cure, but the infeasibility of isolating and characterizing these cells in their natural state has led to uncertainty about whether they possess distinctive attributes that HIV cure-directed therapies might exploit. Here we address this challenge using a microfluidic technology that isolates the transcriptomes of HIV-infected cells based solely on the detection of HIV DNA. HIV-DNA memory CD4 T cells in the blood from people receiving antiretroviral therapy showed inhibition of six transcriptomic pathways, including death receptor signalling, necroptosis signalling and antiproliferative Gα12/13 signalling.

View Article and Find Full Text PDF

The development and connectivity of retinal ganglion cells (RGCs), the retina's sole output neurons, are patterned by activity-independent transcriptional programs and activity-dependent remodeling. To inventory the molecular correlates of these influences, we applied high-throughput single-cell RNA sequencing (scRNA-seq) to mouse RGCs at six embryonic and postnatal ages. We identified temporally regulated modules of genes that correlate with, and likely regulate, multiple phases of RGC development, ranging from differentiation and axon guidance to synaptic recognition and refinement.

View Article and Find Full Text PDF

The genesis of broad neuronal classes from multipotential neural progenitor cells has been extensively studied, but less is known about the diversification of a single neuronal class into multiple types. We used single-cell RNA-seq to study how newly born (postmitotic) mouse retinal ganglion cell (RGC) precursors diversify into ~45 discrete types. Computational analysis provides evidence that RGC transcriptomic type identity is not specified at mitotic exit, but acquired by gradual, asynchronous restriction of postmitotic multipotential precursors.

View Article and Find Full Text PDF
Article Synopsis
  • Postnatal experiences, especially visual input, shape the development of cortical circuitry in the primary visual cortex (V1) of mice, but the details at the cell type level are not fully understood.
  • Research using advanced techniques like single-nucleus RNA sequencing reveals that vision influences the development of specific glutamatergic cell types in the upper cortical layers, while deeper-layer cells are formed before visual input occurs.
  • A specific gene, Igsf9b, which is regulated by vision, plays a crucial role in developing binocular responses by affecting the maturity of upper-layer cells through targeted gene expression related to synaptic connections.
View Article and Find Full Text PDF

Rapidly growing interest in the nanoparticle-mediated delivery of DNA and RNA to plants requires a better understanding of how nanoparticles and their cargoes translocate in plant tissues and into plant cells. However, little is known about how the size and shape of nanoparticles influence transport in plants and the delivery efficiency of their cargoes, limiting the development of nanotechnology in plant systems. In this study we employed non-biolistically delivered DNA-modified gold nanoparticles (AuNPs) of various sizes (5-20 nm) and shapes (spheres and rods) to systematically investigate their transport following infiltration into Nicotiana benthamiana leaves.

View Article and Find Full Text PDF

Retinal ganglion cells (RGCs) form an array of feature detectors, which convey visual information to central brain regions. Characterizing RGC diversity is required to understand the logic of the underlying functional segregation. Using single-cell transcriptomics, we systematically classified RGCs in adult and larval zebrafish, thereby identifying marker genes for >30 mature types and several developmental intermediates.

View Article and Find Full Text PDF