Fungal keratitis is a potential corneal contagious disease mainly caused by yeast such as and filamentous fungi such as The response of fungal keratitis to standard antifungals is limited by the poor bioavailability, the limited ocular penetration of antifungal drugs, and the development of microbial resistance. Photodynamic therapy using rose bengal (RB) as a photosensitizer was found to be effective in fungal keratitis management; however, the hydrophilicity of RB limits its corneal penetration. Polypyrrole-coated gold nanoparticles (AuPpy NP) were introduced as a nano-delivery system of RB with high loading capacity.
View Article and Find Full Text PDFBackground: This study aimed to assess the effect of low-level laser therapy (LLLT) and chia seeds on the mitigation of photoreceptors abnormalities in experimental diabetic retinopathy (DR).
Materials And Methods: A total of 65 female Wistar rats, 5 rats were served as a control group and 60 rats were injected intraperitoneally with one dose of 55 mg/kg of streptozotocin (STZ) to induce DR after 6-8 weeks. The rats were divided into ( = 20 rats each): (a) DR group: did not receive any treatment, (b) DR+ LLLT group was exposed to 670-nm LLLT for 6 weeks (two sessions/week), and (c) DR+ LLLT+ chia seed group, in which rats were exposed to LLLT and administrated with 250 mg/kg/day of chia seeds flour for 2 weeks before STZ injection and continued to the end of the experiment.
Introduction: the off-label use of smartphones for indirect retinal photography and videography made it a popular ophthalmic clinical practice for its ubiquity and simplicity which enhanced telemedical care. Smartphone indirect retinal photography involves focusing the bright flashlight from the light emitting diode (LED) source on the rear side of the phone on the patient´s retina. Phototoxic hazards of the bright light on the already compromised patients´ retina raise concerns that require safety studies.
View Article and Find Full Text PDFThe efficacy of many therapeutics techniques for treatment of branch retinal vein occlusion (BRVO) has been the subject of many investigations. The aim of the present work is to evaluate the transluminal Nd: YAG laser thrombolysis as a new therapeutic approach used for treatment of BRVO in rabbits as an experimental model. Four rabbits were considered as a control (n=8 eyes); occlusion of the branch retinal veins was performed by using a dye enhancing thrombus formation in right eyes of 10 rabbits (n=10 eyes).
View Article and Find Full Text PDF