The development of flame-retardant materials has become an important research direction. For the past dozen years, researchers have been exploring flame retardants with high flame-retardant efficiency, low toxicity, less smoke, or other excellent performance flame retardants. Therefore, this work aimed to synthesize new cyclodiphosph(V)azane derivatives and their Cu(II) and Cd(II) metal complexes and investigated their potential applications as high flame-retardant efficiency.
View Article and Find Full Text PDFNumerous pollutants endanger the safety and purity of water, making water pollution a major worldwide concern. The health of people and aquatic ecosystems are at risk from these contaminants, which include hazardous microbes, industrial waste, and agricultural runoff. Fortunately, there appears to be a viable option to address this problem with adsorptive water treatment techniques.
View Article and Find Full Text PDFThe main objective of this study is to synthesize and characterize of a new three complexes of Pd (II), Cu (II), and Cu (I) metal ions with novel ligand ((Z)-2-(phenylamino)-N'-(thiophen-2-ylmethylene)acetohydrazide) HL. The structural composition of new compounds was assessed using several analytical techniques including FT-IR, H-NMR, electronic spectra, powder X-ray diffraction, and thermal behavior analysis. The Gaussian09 program employed the Density Functional Theory (DFT) approach to optimize the geometry of all synthesized compounds, therefore obtaining the most favorable structures and crucial parameters.
View Article and Find Full Text PDFThe great demand on the energy makes the attention toward modifying lubricating oil. This work tends to prepare the following copolymers; octadecylmethacrylate-co-dodecene (CP) and octadecylmethacrylate-co-hexadecene (CP) by free radical solution polymerization using laboratory prepared octadecylmethacrylate monomer with either 1-dodecene or 1-hexadecene. The same monomers also used to prepare their polymers nanocomposite (NP, NP) with 1% of nanomontmorolonite by emulsion polymerization.
View Article and Find Full Text PDFBackground: Overcoming the failure percentage of orthodontic mini-screws (OMSs), which is about 30% of overall orthodontic cases, especially in malocclusion treatment that requires orthopaedic heavy forces, is a great challenge. Bacterial infections, soft tissue and bone inflammation, and weak connections between bones and the OMS surface are among the main causalities of this failure.
Objective: The aim of the study is to evaluate in vitro the microbiological activities of the deposited nanomaterials (Silver/hydroxyapatite nanoparticles (Ag/HA NPs) and zinc oxide nanoparticles (ZnO NPs)) in terms of microbial inhibition.