Xanthione is a sulfated polycyclic aromatic hydrocarbon which exhibits unique anti-Kasha properties and substantial sensitivity to its medium. Due to this sensitivity however, this makes xanthione-based systems very difficult to simulate. Further, xanthione's is understood to be come more photostable in the presence of a highly polar medium, however whether these photophysical properties could be taken advantage of for certain applications remains to be seen.
View Article and Find Full Text PDFWe introduce a nonclassical model for nanocrystal nucleation in solution which centers on the dynamic interplay of chemical bond breakage and formation coupled with the desolvation of precursor molecules, which we term the molecular chemistry (MC) model. Departing from classical theory, our model employs the bond count as the key variable rather than particle size, thereby redefining the role of supersaturation and its role in determining the so-called critical nucleus size. We apply the model to CdSe nanocrystal formation in nonpolar solvents and showcase its efficacy in predicting solvent dynamics, precursor characteristics, crystal phase, stoichiometry, "magic number" behavior, and transition states.
View Article and Find Full Text PDFTwo-dimensional (2D) organic-inorganic metal halide perovskites have gained immense attention as alternatives to three-dimensional (3D) perovskites in recent years. The hydrophobic spacers in the layered structure of 2D perovskites make them more moisture-resistant than 3D perovskites. Moreover, they exhibit unique anisotropic electrical transport properties due to a structural confinement effect.
View Article and Find Full Text PDFLow-melting liquid metals are emerging as a new group of highly functional solvents due to their capability to dissolve and alloy various metals in their elemental state to form solutions as well as colloidal systems. Furthermore, these liquid metals can facilitate and catalyze multiple unique chemical reactions. Despite the intriguing science behind liquid metals and alloys, very little is known about their fundamental structures in the nanometric regime.
View Article and Find Full Text PDFCrystallization of alloys from a molten state is a fundamental process underpinning metallurgy. Here the direct imaging of an intermetallic precipitation reaction at equilibrium in a liquid-metal environment is demonstrated. It is shown that the outer layers of a solidified intermetallic are surprisingly unstable to the depths of several nanometers, fluctuating between a crystalline and a liquid state.
View Article and Find Full Text PDFTwo-dimensional (2D) metal organic framework (MOF) or metalloporphyrin nanosheets with a stable metal-N complex unit present the metal as a single-atom catalyst dispersed in the 2D porphyrin framework. First-principles calculations on the 3d-transition metals in M-TCPP are investigated in this study for their surface-dependent electronic properties including work function and d-band center. Crystal orbital Hamiltonian population (-pCOHP) analysis highlights a higher contribution of the bonding state in the M-N bond and antibonding state in the N-N bond to be essential for N-N bond activation.
View Article and Find Full Text PDFSodium (Na) doping is a well-established technique employed in chalcopyrite and kesterite solar cells. While various improvements can be achieved in crystalline quality, electrical properties, or defect passivation of the absorber materials by incorporating Na, a comprehensive demonstration of the desired Na distribution in CZTSSe is still lacking. Herein, a straightforward Na doping approach by dissolving NaCl into the CZTS precursor solution is proposed.
View Article and Find Full Text PDFThe emergence of ferroelectricity in two-dimensional (2D) metal oxides is a topic of significant technological interest; however, many 2D metal oxides lack intrinsic ferroelectric properties. Therefore, introducing asymmetry provides access to a broader range of 2D materials within the ferroelectric family. Here, the generation of asymmetry in 2D SnO by doping the material with HfZrO (HZO) is demonstrated.
View Article and Find Full Text PDFInorganic CsPbX (X = Cl, Br, I) perovskite nanocrystals (NCs) possess many advantageous optoelectronic properties, making them an attractive candidate for light emitting diodes, lasers, or photodetector applications. Such perovskite NCs can form extended assemblies that further modify their bandgap and emission wavelength. In this article, a facile direct synthesis of CsPbX NC assemblies that are 1 μm in size and are composed of 10 nm-sized NC building blocks is reported.
View Article and Find Full Text PDFThe use of liquid gallium as a solvent for catalytic reactions has enabled access to well-dispersed metal atoms configurations, leading to unique catalytic phenomena, including activation of neighbouring liquid atoms and mobility-induced activity enhancement. To gain mechanistic insights into liquid metal catalysts, here we introduce a GaSnNi liquid alloy for selective propylene synthesis from decane. Owing to their mobility, dispersed atoms in a Ga matrix generate configurations where interfacial Sn and Ni atoms allow for critical alignments of reactants and intermediates.
View Article and Find Full Text PDFInorganic lead-free halide perovskites, devoid of toxic or rare elements, have garnered considerable attention as photocatalysts for pollution control, CO reduction and hydrogen production. In the extensive perovskite design space, factors like substitution or doping level profoundly impact their performance. To address this complexity, a synergistic combination of machine learning models and theoretical calculations were used to efficiently screen substitution elements that enhanced the photoactivity of substituted Cs AgBiBr perovskites.
View Article and Find Full Text PDFA non-empirical equation describing the effect of size on the temperature dependence of the optical bandgap of CdS (d/d) is obtained on the basis of the Brus equation. Intriguingly, we find that d/d diverges strongly from bulk values only within the "extreme confinement" (EC) regime. We conducted both experimental and theoretical investigations of the absorption spectra of CdS clusters and quantum dots as a function of temperature above room temperature.
View Article and Find Full Text PDFTwo-dimensional (2D) layered metal dichalcogenides constitute a promising class of materials for photodetector applications due to their excellent optoelectronic properties. The most common photodetectors, which work on the principle of photoconductive or photovoltaic effects, however, require either the application of external voltage biases or built-in electric fields, which makes it challenging to simultaneously achieve high responsivities across broad-band wavelength excitation─especially beyond the material's nominal band gap─while producing low dark currents. In this work, we report the discovery of an intricate phonon-photon-electron coupling─which we term the effect─in SnS that facilitates efficient photodetection through the application of 100 MHz order propagating surface acoustic waves (SAWs).
View Article and Find Full Text PDFGating logical operations through high-lying electronic excited states presents opportunities for developing ultrafast, subnanometer computational devices. A lack of molecular systems with sufficiently long-lived higher excited states has hindered practical realization of such devices, but recent studies have reported intriguing photophysics from high-lying excited states of perylene. In this work, we use femtosecond spectroscopy supported by quantum chemical calculations to identify and quantify the relaxation dynamics of monomeric perylene's higher electronic excited states.
View Article and Find Full Text PDFHalide perovskites have attracted enormous attention due to their potential applications in optoelectronics and photocatalysis. However, concerns over their instability, toxicity, and unsatisfactory efficiency have necessitated the development of lead-free all-inorganic halide perovskites. A major challenge in designing efficient halide perovskites for practical applications is the lack of effective methods for producing nanocrystals with precise size and shape control.
View Article and Find Full Text PDFThe first order and second order corrected photoluminescence quantum yields are computed and compared to experiment for naphthalene in this manuscript discussing negative results. Results for anthracene and tetracene are recalled from previous work (Manian et al. in J Chem Phys 155:054108, 2021), and the results for all three polyacenes are juxtaposed to each other.
View Article and Find Full Text PDFWe present the first benchmarking study of nonadiabatic matrix coupling elements (NACMEs) calculated using different density functionals. Using the → transition in perylene solvated in toluene as a case study, we calculate the photophysical properties and corresponding rate constants for a variety of density functionals from each rung of Jacob's ladder. The singlet photoluminescence quantum yield (sPLQY) is taken as a measure of accuracy, measured experimentally here as 0.
View Article and Find Full Text PDFEstablishing a data-driven pipeline for the discovery of novel materials requires the engineering of material features that can be feasibly calculated and can be applied to predict a material's target properties. Here we propose a new class of descriptors for describing crystal structures, which we term Robust One-Shot Ab initio (ROSA) descriptors. ROSA is computationally cheap and is shown to accurately predict a range of material properties.
View Article and Find Full Text PDFDNAzyme-based (catalytic nucleic acid) biosensing technology is recognised as a valuable biosensing tool in diagnostic medicine and seen as a cheaper, more stable alternative to antibodies or enzymes. However, like enzyme discovery, no method exists to predict DNAzyme sequences that result in high catalytic activity using computer software (). In this work, iterative maturation and evaluation were applied to a DNAzyme oligodeoxynucleotide (ODN) sequence to elucidate novel synthetic sequences with enhanced DNAzyme activity.
View Article and Find Full Text PDFThis paper explores phosphorescence from a first principles standpoint, and examines the intricacies involved in calculating the spin-forbidden → transition dipole moment, to highlight that the mechanism is not as complicated to compute as it seems. Using gas phase acridine as a case study, we break down the formalism required to compute the phosphorescent spectra within both the Franck-Condon and Herzberg-Teller regimes by coupling the first triplet excited state up to the and states. Despite the first singlet excited state appearing as an state and not of nπ* character, the second order corrected rate constant was found to be 0.
View Article and Find Full Text PDFAccumulation of heavy metal ions, including copper ions (Cu), presents a serious threat to human health and to the environment. A substantial amount of research has focused on detecting such species in aqueous solutions. However, progress towards ultrasensitive and easy-to-use sensors for non-aqueous solutions is still limited.
View Article and Find Full Text PDFIndium nitride (InN) has been of significant interest for creating and studying two-dimensional electron gases (2DEG). Herein we demonstrate the formation of 2DEGs in ultrathin doped and undoped 2D InN nanosheets featuring high carrier mobilities at room temperature. The synthesis is carried out via a two-step liquid metal-based printing method followed by a microwave plasma-enhanced nitridation reaction.
View Article and Find Full Text PDF