Publications by authors named "Salvio M"

Objectives: Graft-versus-host disease (GVHD) of central nervous system is an atypical and rare manifestation of chronic GVHD, presenting with a heterogeneous spectrum of signs and symptoms. Diagnosis of neurological manifestations of GVHD can be highly challenging and remain associated with dismal prognosis, significant morbidity, and reduced quality of life.

Case Presentation: In this report, we describe a 39-year-old woman developing neurological signs and symptoms 8 months after allogeneic HSCT magnetic resonance imaging showed multifocal hyperintense lesions involving the periventricular region and frontal subcortical white matter.

View Article and Find Full Text PDF

Compelling evidence indicates that defects in nucleocytoplasmic transport contribute to the pathogenesis of amyotrophic lateral sclerosis (ALS). In particular, hexanucleotide (G4C2) repeat expansions in , the most common cause of genetic ALS, have a widespread impact on the transport machinery that regulates the nucleocytoplasmic distribution of proteins and RNAs. We previously reported that the expression of G4C2 hexanucleotide repeats in cultured human and mouse cells caused a marked accumulation of poly(A) mRNAs in the cell nuclei.

View Article and Find Full Text PDF

Background: ALS is an incurable neuromuscular degenerative disorder. A familiar form of the disease (fALS) is related to point mutations. The most common one is an expansion of a noncoding GGGGCC hexanucleotide repeat of the C9orf72 gene on chromosome 9p21.

View Article and Find Full Text PDF

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

View Article and Find Full Text PDF

Several of the identified genetic factors in Amyotrophic Lateral Sclerosis (ALS) point to dysfunction in RNA processing as a major pathogenic mechanism. However, whether a precise RNA pathway is particularly affected remains unknown. Evidence suggests that FUS, that is mutated in familial ALS, and SMN, the causative factor in Spinal Muscular Atrophy (SMA), cooperate to the same molecular pathway, i.

View Article and Find Full Text PDF

Cells robustly reprogram gene expression during stress generated by protein misfolding and aggregation. In this condition, cells assemble the bulk of mRNAs into translationally silent stress granules (SGs), while they sustain the translation of specific mRNAs coding for proteins that are needed to overcome cellular stress. Alterations of this process are deeply associated to neurodegeneration.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder due to motor neuron loss. Fused in sarcoma (FUS) protein carrying ALS-associated mutations localizes to stress granules and causes their coalescence into larger aggregates. Here we show that Pur-alpha physically interacts with mutated FUS in an RNA-dependent manner.

View Article and Find Full Text PDF

Recessive dystrophic epidermolysis bullosa (RDEB) is a genodermatosis characterized by fragile skin forming blisters that heal invariably with scars. It is due to mutations in the COL7A1 gene encoding type VII collagen, the major component of anchoring fibrils connecting the cutaneous basement membrane to the dermis. Identical COL7A1 mutations often result in inter- and intra-familial disease variability, suggesting that additional modifiers contribute to RDEB course.

View Article and Find Full Text PDF

During embryonic development, the rostral neuroectoderm is regionalized into broad areas that are subsequently subdivided into progenitor compartments with specialized identity and fate. These events are controlled by signals emitted by organizing centers and interpreted by target progenitors, which activate superimposing waves of intrinsic factors restricting their identity and fate. The transcription factor Otx2 plays a crucial role in mesencephalic development by positioning the midbrain-hindbrain boundary (MHB) and its organizing activity.

View Article and Find Full Text PDF

Understanding the molecular basis underlying the neurogenesis of mesencephalic-diencephalic Dopaminergic (mdDA) neurons is a major task fueled by their relevance in controlling locomotor activity and emotion and their involvement in neurodegenerative and psychiatric diseases. Increasing evidence suggests that mdDA neurons of the substantia nigra pars compacta (SNpc) and ventral tegmental area (VTA) represent two main distinct neuronal populations, which, in turn, include specific neuronal subsets. Relevant studies provided important results on mdDA neurogenesis, but, nevertheless, have not yet clarified how the identity of mdDA neuronal subtypes is established and, in particular, whether neurogenic factors may direct progenitors towards the differentiation of specific mdDA neuronal subclasses.

View Article and Find Full Text PDF

Mesencephalic-diencephalic dopaminergic (mdDA) neurons play a relevant role in the control of movement, behavior, and cognition. Indeed loss and/or abnormal functioning of mdDA neurons are responsible for Parkinson's disease as well as for addictive and psychiatric disorders. In the last years a wealth of information has been provided on gene functions controlling identity, fate, and proliferation of mdDA progenitors.

View Article and Find Full Text PDF

Mesencephalic and diencephalic dopaminergic (mdDA) progenitors generate two major groups of neurons corresponding to the A9 neurons of the substantia nigra pars compacta (SNpc) and the A10 neurons of the ventral tegmental area (VTA). MdDA neurons control motor, sensorimotor and motivated behaviour and their degeneration or abnormal functioning is associated to Parkinson's disease and psychiatric disorders. Although relevant advances have been made, the molecular basis controlling identity, survival and vulnerability to neurodegeneration of SNpc and VTA neurons remains poorly understood.

View Article and Find Full Text PDF

Mesencephalic-diencephalic dopaminergic neurons control locomotor activity and emotion and are affected in neurodegenerative and psychiatric diseases. The homeoprotein Otx2 is restricted to ventral tegmental area (VTA) neurons that are prevalently complementary to those expressing Girk2 and glycosylated active form of the dopamine transporter (Dat). High levels of glycosylated Dat mark neurons with efficient dopamine uptake and pronounced vulnerability to Parkinsonian degeneration.

View Article and Find Full Text PDF

Neurons usually migrate and differentiate in one particular encephalic vesicle. We identified a murine population of diencephalic neurons that colonized the telencephalic amygdaloid complex, migrating along a tangential route that crosses a boundary between developing brain vesicles. The diencephalic transcription factor OTP was necessary for this migratory behavior.

View Article and Find Full Text PDF

The locus coeruleus (LC) which is the major noradrenergic nucleus in the brain develops under the influence of Bmps secreted by the roof plate and Fgf8 emitted from the mid-hindbrain organizer. We studied the development of the LC in different Bmp mouse mutants and report the absence of this nucleus in Bmp5(-/-);Bmp7(-/-) double knockouts. Notably, genes marking organizers and neuronal populations adjacent to the LC precursor field are unperturbed in Bmp5(-/-);Bmp7(-/-) animals.

View Article and Find Full Text PDF

Mesencephalic-diencephalic dopaminergic (mdDA) neurons control motor, sensorimotor and motivated behaviour and their degeneration or abnormal functioning is associated with important pathologies, such as Parkinsons disease and psychiatric disorders. Despite great efforts, the molecular basis and the genetic factors differentially controlling identity, survival and vulnerability to neurodegeneration of mdDA neurons of the substantia nigra (SN) and ventral tegmental area (VTA) are poorly understood. We have previously shown that the transcription factor Otx2 is required for identity, fate and proliferation of mesencephalic DA (mesDA) progenitors.

View Article and Find Full Text PDF

Genetic and embryological experiments demonstrated that the visceral endoderm (VE) is essential for positioning the primitive streak at one pole of the embryo and head morphogenesis through antagonism of the Wnt and Nodal signaling pathways. The transcription factor Otx2 is required for VE anteriorization and specification of rostral neuroectoderm at least in part by controlling the expression of Dkk1 and Lefty1. Here, we investigated the relevance of the Otx2 transcriptional control in these processes.

View Article and Find Full Text PDF

Little is known about the cues controlling the generation of motoneuron populations in the mammalian ventral midbrain. We show that Otx2 provides the crucial anterior-posterior positional information for the generation of red nucleus neurons in the murine midbrain. Moreover, the homeodomain transcription factor Nkx6-1 controls the proper development of the red nucleus and of the oculomotor and trochlear nucleus neurons.

View Article and Find Full Text PDF

Cadherins and their associated cytoplasmic proteins, catenins, are critical to the maintenance of normal tissue integrity and the suppression of cancer invasion. The cadherin profile in malignant mesothelioma (MM) is not well defined and the role of the cadherin-catenin system in the pathogenesis of MM remains to be determined. By means of Western blot analysis and immunohistochemistry the expression of E (epithelial)-, N (neural)-, P (placental)-cadherin, and alpha-, beta- and gamma-catenins was studied in nine human MM cell lines and five human mesothelial cell lines.

View Article and Find Full Text PDF

The long latency period between asbestos exposure and the onset of malignant mesothelioma (MM) suggests that a multistep tumorigenesis process occurs whilst the capability of asbestos fibres to interfere directly with chromosomes focuses on the critical role of the chromosomal abnormalities in this neoplasm. The aim of our study was to identify any recurrent chromosomal changes in ten primary MM cell cultures derived from pleural effusions of patients with MM from the same geographic area and environmental and/or occupational exposure to asbestos fibers. Cytogenetic analysis was performed in accordance with International System for Human Cytogenetic Nomenclature.

View Article and Find Full Text PDF

This study compared the cigarette smoking of substance abusers whose primary substance of abuse was cocaine (cocaine group: n = 18) or alcohol (alcohol group: n = 23). Cigarette smoking and smoking topography was assessed daily (via self-report and single cigarette topography assessments) at baseline and following a switch to a cigarette brand with 30% lower nicotine. The alcohol and cocaine groups did not differ at baseline on cigarettes smoked per day, cigarette nicotine, smoking topography, or the Fagerstrom Tolerance Questionnaire.

View Article and Find Full Text PDF

This paper presents data regarding a residential rehabilitation program that integrates cognitive-behavioral and therapeutic community techniques to treat homelessness and substance abuse. The study cohort was 110 military veterans admitted to a Domiciliary Care for Homeless Veterans program of the Department of Veterans Affairs. The cohort had multiple psychosocial problems at admission, and all had drug/alcohol abstinence as a treatment goal.

View Article and Find Full Text PDF

Fifty-one healthy elderly subjects (median age = 65) gave retrospective estimates of nightmare frequency in questionnaires and recorded the occurrence of nightmares in daily logs over a 2-week period. (a) Mean annual nightmare frequency as estimated from logs was only 65% as high among college student controls. (b) Elderly subjects were about 1/5 as likely as college students to report a problem with nightmares.

View Article and Find Full Text PDF