In this article we report results for the electronic and vibrational hyperpolarizabilities of ten molecules: Li@benzene, Li@pyridine, Li@pyrimidine, and Li@pyrazine; Li@naphthalene, Li@quinoline, Li@isoquinoline, Li@cinnolin, Li@quinazoline, and Li@quinoxaline. An electron correlation study shows that second-order many-body perturbation theory and density functional theory with CAM-B3LYP and M05-2X functionals give results for the electronic hyperpolarizabilities in good agreement with coupled cluster with single and doubles reference values. Static and dynamic vibrational corrections were computed through the perturbation theoretical method of Bishop and Kirtman and using a variational approach.
View Article and Find Full Text PDFIn this work, we report results for the static second hyperpolarizability of magnesium oxide clusters including electronic and vibrational contributions. The comparison between second-order Møller-Plesset (MP2) perturbation theory and coupled cluster results to the electronic contribution points out that MP2 is a suitable method to compute this property. When computed at the MP2 level, the electronic contribution per atom converges to approximately 5000 a.
View Article and Find Full Text PDFIn this work, we report results of vibrational corrections to the second hyperpolarizabilities of Al2P2, Al3P3, Al4P4, Al6P6, and Al9P9 clusters. The vibrational corrections were calculated through the perturbation theoretic method of Bishop and Kirtman and also using a variational methodology at the second order Møller-Plesset perturbation theory level with the aug-cc-pVDZ basis set. Results show that the vibrational corrections are important, accounting for more than half of the corresponding electronic second hyperpolarizabilities at the static limit.
View Article and Find Full Text PDF