Publications by authors named "Salvay A"

Microbial exopolymers are gaining attention as sources for the development of biodegradable materials. Milk kefir, a fermented dairy product produced by a symbiotic community of microorganisms, generates milk kefir grains as a by-product, consisting of the polysaccharide kefiran and proteins. This study develops two materials, one from whole milk kefir grains and another from purified kefiran.

View Article and Find Full Text PDF

Herein, four different grafted chitosans were synthesized by covalent attachment of glycine, L-arginine, L-glutamic acid, or L-cysteine to the chitosan chains. All products were subsequently permethylated to obtain their corresponding quaternary ammonium salts to enhance the inherent antimicrobial properties of native chitosan. In all cases, transparent hydrogels with the following remarkable characteristics were obtained: i) high-water absorption capacity (32-44 g HO per g of polymer), ii) viscoelastic behavior at low deformations, iii) flexibility when subjected to deformations and iv) stability over long time scales.

View Article and Find Full Text PDF

The indiscriminate use of petroleum-based polymers and plastics for single-use food packaging has led to serious environmental problems due the non-biodegradable characteristics. Thus, much attention has been focused on the research of new biobased and biodegradable materials. Yeast and fungal biomass are low-cost and abundant sources of biopolymers with highly promising properties for the development of biodegradable materials.

View Article and Find Full Text PDF

The use of biopolymeric materials is restricted for some applications due to their deficient properties in comparison to synthetic polymers. Blending different biopolymers is an alternative approach to overcome these limitations. In this study, we developed new biopolymeric blend materials based on the entire biomasses of water kefir grains and yeast.

View Article and Find Full Text PDF

The main objective of this work is the development of new active films based on yeast cell wall obtained by high-pressure homogenization (YCW-H) supplemented with naphtho-γ-pyrone (CL-NGP) extract, which is a bioactive compound produced by Aspergillus tubingensis G131 with great antioxidant potential. A complete characterization of the functional properties of the bioactive films, such as their structural, colour, thermal, mechanical, hydration and water vapour transport, was carried out to evaluate the influence of the addition of the antioxidant compounds. Likewise, the antioxidant capacity of the developed materials and the specific migration of NGPs in food simulants were evaluated.

View Article and Find Full Text PDF

The symbiotic community of bacteria and yeast (SCOBY) of Kombucha beverage produces a floating film composed of bacterial cellulose, a distinctive biobased material. In this work, Kombucha fermentation was carried out in six different herbal infusions, where SCOBY was able to synthesise cellulosic films. Infusions of black and green tea, yerba mate, lavender, oregano and fennel added with sucrose (100 g/l) were used as culture media.

View Article and Find Full Text PDF

Background: Yeast biomass, mainly composed of proteins and polysaccharides (mannans and β-glucans), has been proposed to develop films. pH can affect the solubility of polysaccharides, the structure of the cell wall, and the interactions between proteins. Considering the potential impact of these effects, the pH of yeast film-forming dispersions was studied from 4 to 11.

View Article and Find Full Text PDF

Poly(itaconic acid) (PIA) was synthesized via conventional radical polymerization. Then, functionalization of PIA was carried out by an esterification reaction with the heterocyclic groups of 1,3-thiazole and posterior quaternization by N-alkylation reaction with iodomethane. The modifications were confirmed by Fourier transform infrared (FTIR) and proton nuclear magnetic resonance (H-NMR), as well as ζ-potential measurements.

View Article and Find Full Text PDF

There is a strong public concern about plastic waste, which promotes the development of new biobased materials. The benefit of using microbial biomass for new developments is that it is a completely renewable source of polymers, which is not limited to climate conditions or may cause deforestation, as biopolymers come from vegetal biomass. The present review is focused on the use of microbial biomass and its derivatives as sources of biopolymers to form new materials.

View Article and Find Full Text PDF

The 1.8 Å resolution neutron structure of deuterated type III antifreeze protein in which the methyl groups of leucine and valine residues are selectively protonated is presented. Comparison between this and the 1.

View Article and Find Full Text PDF

This study investigated the structural and biophysical characteristics of GumB and GumC, two Xanthomonas campestris membrane proteins that are involved in xanthan biosynthesis. Xanthan is an exopolysaccharide that is thought to be a virulence factor that contributes to bacterial in planta growth. It also is one of the most important industrial biopolymers.

View Article and Find Full Text PDF
Article Synopsis
  • * The study identifies two transient α-helix segments within the E7 protein, with one being linked to a binding motif for the retinoblastoma tumor suppressor, and the other displaying pH sensitivity.
  • * The findings highlight how the E7N domain can alternate between various structural forms, potentially impacting its ability to engage in multiple cellular interactions and contribute to cancer development.
View Article and Find Full Text PDF

Frataxin (FXN) is an α/β protein that plays an essential role in iron homeostasis. Apparently, the function of human FXN (hFXN) depends on the cooperative formation of crucial interactions between helix α1, helix α2, and the C-terminal region (CTR) of the protein. In this work we quantitatively explore these relationships using a purified recombinant fragment hFXN90-195.

View Article and Find Full Text PDF

The size of intrinsically disordered proteins (IDPs) is large compared to their molecular mass and the resulting mass-to-size ratio is unusual. The sedimentation coefficient, which can be obtained from sedimentation velocity (SV) analytical ultracentrifugation (AUC), is directly related to this ratio and can be easily interpreted in terms of frictional ratio. This chapter is a step-by-step protocol for setting up, executing and analyzing SV experiments in the context of the characterization of IDPs, based on a real case study of the partially folded C-terminal domain of Sendai virus nucleoprotein.

View Article and Find Full Text PDF

Antifreeze proteins (AFPs) inhibit ice growth at sub-zero temperatures. The prototypical type-III AFPs have been extensively studied, notably by X-ray crystallography, solid-state and solution NMR, and mutagenesis, leading to the identification of a compound ice-binding surface (IBS) composed of two adjacent ice-binding sections, each which binds to particular lattice planes of ice crystals, poisoning their growth. This surface, including many hydrophobic and some hydrophilic residues, has been extensively used to model the interaction of AFP with ice.

View Article and Find Full Text PDF

The small membrane protein p7 of hepatitis C virus forms oligomers and exhibits ion channel activity essential for virus infectivity. These viroporin features render p7 an attractive target for antiviral drug development. In this study, p7 from strain HCV-J (genotype 1b) was chemically synthesized and purified for ion channel activity measurements and structure analyses.

View Article and Find Full Text PDF

It has been suggested that above a critical protein concentration, fish Type III antifreeze protein (AFP III) self-assembles to form micelle-like structures that may play a key role in antifreeze activity. To understand the complex activity of AFP III, a comprehensive description of its association state and structural organization in solution is necessary. We used analytical ultracentrifugation, analytical size-exclusion chromatography, and dynamic light scattering to characterize the interactions and homogeneity of AFP III in solution.

View Article and Find Full Text PDF

We have investigated the potential of new methods of analysis of sedimentation velocity (SV) analytical ultracentrifugation (AUC) for the characterization of detergent-solubilized membrane proteins. We analyze the membrane proteins Ca(++)-ATPase and ExbB solubilized with DDM (dodecyl-beta-D: -maltoside). SV is extremely well suited for characterizing sample heterogeneity.

View Article and Find Full Text PDF

Antifreeze proteins (AFPs) are ice-binding proteins that depress the freezing point of water in a non-colligative manner without a significant modification of the melting point. Found in the blood and tissues of some organisms (such as fish, insects, plants, and soil bacteria), AFPs play an important role in subzero temperature survival. Fish Type III AFP is present in members of the subclass Zoarcoidei.

View Article and Find Full Text PDF

Detergents are customarily used to solubilize cell membranes and keep membrane proteins soluble in aqueous buffers, but they often lead to irreversible protein inactivation. Hemifluorinated amphiphiles with hybrid hydrophobic chains have been specifically designed to minimize the denaturating propensity of surfactants toward membrane proteins. We have studied the physical-chemical and biochemical properties of lactobionamide surfactants bearing either a hydrogenated, a fluorinated or a hemifluorinated chain (respectively H-, F-, and HF-Lac).

View Article and Find Full Text PDF

We report here the first direct measurements of changes in protein hydration triggered by a functional binding. This task is achieved by weighing hemoglobin (Hb) and myoglobin films exposed to an atmosphere of 98% relative humidity during oxygenation. The binding of the first oxygen molecules to Hb tetramer triggers a change in protein conformation, which increases binding affinity to the remaining empty sites giving rise to the appearance of cooperative phenomena.

View Article and Find Full Text PDF