The paper arguments are on enabling methodologies for the design of a fully parallel, online, interactive tool aiming to support the bioinformatics scientists .In particular, the features of these methodologies, supported by the FastFlow parallel programming framework, are shown on a simulation tool to perform the modeling, the tuning, and the sensitivity analysis of stochastic biological models. A stochastic simulation needs thousands of independent simulation trajectories turning into big data that should be analysed by statistic and data mining tools.
View Article and Find Full Text PDFBackground: Repeated oscillations in intracellular calcium (Ca2+) concentration, known as Ca2+ spiking signals, have been described in plants for a limited number of cellular responses to biotic or abiotic stimuli and most notably the common symbiotic signaling pathway (CSSP) which mediates the recognition by their plant hosts of two endosymbiotic microbes, arbuscular mycorrhizal (AM) fungi and nitrogen fixing rhizobia. The detailed analysis of the complexity and variability of the Ca2+ spiking patterns which have been revealed in recent studies requires both extensive datasets and sophisticated statistical tools.
Results: As a contribution, we have developed automated Ca2+ spiking analysis (CaSA) software that performs i) automated peak detection, ii) statistical analyses based on the detected peaks, iii) autocorrelation analysis of peak-to-peak intervals to highlight major traits in the spiking pattern.