The proangiogenic members of VEGF family and related receptors play a central role in the modulation of pathological angiogenesis. Recent insights indicate that, due to the strict biochemical and functional relationship between VEGFs and related receptors, the development of a new generation of agents able to target contemporarily more than one member of VEGFs might amplify the antiangiogenic response representing an advantage in term of therapeutic outcome. To identify molecules that are able to prevent the interaction of VEGFs with related receptors, we have screened small molecule collections consisting of >100 plant extracts.
View Article and Find Full Text PDFCripto is a glycosylphosphatidylinositol-anchored coreceptor that binds Nodal and the activin type I (ALK)-4 receptor, and is involved in cardiac differentiation of mouse embryonic stem cells (mESCs). Interestingly, genetic ablation of cripto results in increased neuralization and midbrain dopaminergic (DA) differentiation of mESCs, as well as improved DA cell replacement therapy (CRT) in a model of Parkinson's disease (PD). In this study, we developed a Cripto specific blocking tool that would mimic the deletion of cripto, but could be easily applied to embryonic stem cell (ESC) lines without the need of genetic manipulation.
View Article and Find Full Text PDFVascular endothelial growth factor receptor-1 (VEGFR-1, also known as Flt-1) is involved in complex biological processes often associated to severe pathological conditions like cancer, inflammation, and metastasis formation. Consequently, the search for antagonists of Flt-1 has recently gained a growing interest. Here we report the identification of a tetrameric tripeptide from a combinatorial peptide library built using non-natural amino acids, which binds Flt-1 and inhibits in vitro its interaction with placental growth factor (PlGF) and vascular endothelial growth factor (VEGF) A and B (IC(50) approximately 10 microm).
View Article and Find Full Text PDFThe activation of vascular endothelial growth factor receptor-1 (VEGFR-1, also known as Flt-1) is crucial in many physiological and pathological conditions, like angiogenesis, cancer, inflammation, hematopoiesis, bone marrow precursors/stem cells recruitment in tumor angiogenesis, and metastasis formation. Many recent reports indicate that molecules able to antagonize Flt-1 activity have gained a strong interest in the view of therapeutic approaches. In order to identify new compounds able to interfere in the Flt-1 recognition by VEGFs family members, we have developed a highly sensitive competitive ELISA-based screening to study plant extracts and derivatives.
View Article and Find Full Text PDFFor the first time fish RNases have been isolated and characterized. Their functional and structural properties indicate that they belong to the RNase A superfamily (or tetrapod RNase superfamily), now more appropriately described as the vertebrate RNase superfamily. Our findings suggest why previously repeated efforts to isolate RNases from fish tissues have met with no success; fish RNases have a very low ribonucleolytic activity, and their genes have a low sequence identity with those of mammalian RNases.
View Article and Find Full Text PDFWe report for the first time the chemical synthesis of refolded CFC domain of mouse Cripto (mCFC) and of two variants bearing mutations on residues W107 and H104 involved in Alk4 binding. The domains undergo spontaneous and quantitative refolding in about 4 h, yet with very different kinetics. Disulfide linkages have been assessed by enzyme digestion and mass spectrometry analysis of resulting fragments, and the first experimental studies on structural organization have been conducted by circular dichroism spectroscopy under different pH conditions.
View Article and Find Full Text PDF