Silk fibroin is an important biomaterial for photonic devices in wearable systems. The functionality of such devices is inherently influenced by the stimulation from elastic deformations, which are mutually coupled through photo-elasticity. Here, we investigate the photo-elasticity of silk fibroin employing optical whispering gallery mode resonation of light at the wavelength of 1550 nm.
View Article and Find Full Text PDFIn several biomedical applications, the detection of biomarkers demands high sensitivity, selectivity and easy-to-use devices. Organic electrochemical transistors (OECTs) represent a promising class of devices combining a minimal invasiveness and good signal transduction. However, OECTs lack of intrinsic selectivity that should be implemented by specific approaches to make them well suitable for biomedical applications.
View Article and Find Full Text PDFThe production of 3D printed safety protection devices (SPD) requires particular attention to the material selection and to the evaluation of mechanical resistance, biological safety and surface roughness related to the accumulation of bacteria and viruses. We explored the possibility to adopt additive manufacturing technologies for the production of respirator masks, responding to the sudden demand of SPDs caused by the emergency scenario of the pandemic spread of SARS-COV-2. In this study, we developed different prototypes of masks, exclusively applying basic additive manufacturing technologies like fused deposition modeling (FDM) and droplet-based precision extrusion deposition (db-PED) to common food packaging materials.
View Article and Find Full Text PDFDrought stress imposes a major constraint over a crop yield and can be expected to grow in importance if the climate change predicted comes about. Improved methods are needed to facilitate crop management via the prompt detection of the onset of stress. Here, we report the use of an in vivo OECT (organic electrochemical transistor) sensor, termed as bioristor, in the context of the drought response of the tomato plant.
View Article and Find Full Text PDFRapid Prototyping (RP) promises to induce a revolutionary impact on how the objects can be produced and used in industrial manufacturing as well as in everyday life. Over the time a standard technique as the 3D Stereolithography (SL) has become a fundamental technology for RP and Additive Manufacturing (AM), since it enables the fabrication of the 3D objects from a cost-effective photocurable resin. Efforts to obtain devices more complex than just a mere aesthetic simulacre, have been spent with uncertain results.
View Article and Find Full Text PDFThe perspective of downscaling organic electrochemical transistors (OECTs) in the nanorange is approached by depositing poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) on electrodes with a nanogap designed and fabricated by electromigration induced break junction (EIBJ) technique. The electrical response of the fabricated devices is obtained by acquiring transfer characteristics in order to clarify the specific main characteristics of OECTs with sub-micrometer-sized active channels (nanogap-OECTs). On the basis of their electrical response to different scan times, the nanogap-OECT shows a maximum transconductance unaffected upon changing scan times in the time window from 1 s to 100 µs, meaning that fast varying signals can be easily acquired with unchanged amplifying performance.
View Article and Find Full Text PDFThis work aims to show the feasibility of an innovative approach for the manufacturing of organic-based devices with a true three-dimensional and customizable structure that is made possible by plastic templates, fabricated by additive manufacturing methods, and coated by conducting organic thin films. Specifically, a three-dimensional prototype based on a polyamide structure covered by poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) using the dip-coating technique demonstrated a multifunctional character. The prototype is indeed able to operate both as a three-terminal device showing the typical response of organic electrochemical transistors (OECTs), with a higher amplification performance with respect to planar (2D) all-PEDOT:PSS OECTs, and as a two-terminal device able to efficiently implement a resistive sensing of water vaporization and perspiration, showing performances at least comparable to that of state-of-art resistive humidity sensors based on pristine PEDOT:PSS.
View Article and Find Full Text PDFOrganic electrochemical transistors (OECTs) represent a powerful and versatile type of organic-based device, widely used in biosensing and bioelectronics due to potential advantages in terms of cost, sensitivity, and system integration. The benchmark organic semiconductor they are based on is poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS), the electrical properties of which are reported to be strongly dependent on film morphology and structure. In particular, the literature demonstrates that film processing induces morphostructural changes in terms of conformational rearrangements in the PEDOT:PSS in-plane phase segregation and out-of-plane vertical separation between adjacent PEDOT-rich domains.
View Article and Find Full Text PDFJ Mater Chem B
September 2018
We demonstrate the label-free and selective detection of interleukin-6 (IL-6), a key cell-signaling molecule in biology and medicine, by integrating an OECT with an immuno-affinity regenerated cellulose membrane. The objective of the membrane is to increase the local concentration of IL-6 at the sensing electrode and, thereby, enhance the device response for concentrations falling within the physiological concentration range of cytokines. The OECT gate electrode is functionalized with an oligo(ethylene glycol)-terminated self-assembled alkanethiolate monolayer (SAM) for both the immobilization of anti IL-6 antibodies and the inhibition of non-specific biomolecule binding.
View Article and Find Full Text PDFThe in vivo monitoring of key plant physiology parameters will be a key enabler of precision farming. Here, a biomimetic textile-based biosensor, which can be inserted directly into plant tissue is presented: the device is able to monitor, in vivo and in real time, variations in the solute content of the plant sap. The biosensor has no detectable effect on the plant's morphology even after six weeks of continuous operation.
View Article and Find Full Text PDFWe explore and demonstrate the extension of the synapse-mimicking properties of memristive devices to a dysfunctional synapse as it occurs in the Alzheimer's disease (AD) pathology. The ability of memristive devices to reproduce synapse properties such as LTP, LTD, and STDP has been already widely demonstrated, and moreover, they were used for developing artificial neuron networks (perceptrons) able to simulate the information transmission in a cell network. However, a major progress would be to extend the common sense of neuromorphic device even to the case of dysfunction of natural synapses.
View Article and Find Full Text PDFWe report a comprehensive study of the biocompatibility and neurocompatibility of titanium dioxide films (TiO) prepared by Pulsed Microplasma Cluster Source (PMCS). This technique uses supersonic pulsed beams seeded by clusters of the metal oxide synthesized in a plasma discharge. The final stoichiometry of the TiO thin films is tuned changing the gas mixture, achieving stoichiometric or oxygen overstoichiometric films.
View Article and Find Full Text PDFThe data included in this paper are associated with the research article entitled "Markers for toxicity to HepG2 exposed to cadmium sulphide quantum dots; damage to mitochondria" (Paesano et al.) [1]. The article concerns the cytotoxic and genotoxic effects of CdS QDs in HepG2 cells and the mechanisms involved.
View Article and Find Full Text PDFInteraction of living organisms with quantum dots (QDs) is certainly more focused on environment and occupational exposure associated with production and release or disposal. Here, the transcription of genes involved in mitochondrial organization and function in HepG2 cells exposed to cadmium sulphide (CdS) QDs has been profiled to highlight biomarkers of exposure and effect to be tested for other cadmium based QDs. At low concentrations, exposure to CdS QDs induced only minor damage to nuclear DNA, and none to mitochondrial DNA.
View Article and Find Full Text PDFUnlabelled: The design of electrodes based on conductive polymers in brain-machine interface technology offers the opportunity to exploit variably manufactured materials to reduce gliosis, indeed the most common brain response to chronically implanted neural electrodes. In fact, the use of conductive polymers, finely tailored in their physical-chemical properties, might result in electrodes with improved adaptability to the brain tissue and increased charge-transfer efficiency. Here we interfaced poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (
Pedot: PSS) doped with different amounts of ethylene glycol (EG) with rat hippocampal primary cultures grown for 3 weeks on these synthetic substrates.
Pedot: PSS is a conductive polymer that can be integrated into last generation Organic Electrochemical Transistor (OECT) devices for biological inspection, identification and analysis. While a variety of reports in literature demonstrated the chemical and biological sensitivity of these devices, still their ability in resolving complex mixtures remains controversial. Similar OECT devices display good time dynamics behavior but lack spatial resolution.
View Article and Find Full Text PDFBiophys Chem
January 2016
We propose and demonstrate a sensitive diagnostic device based on an Organic Electrochemical Transistor (OECT) for direct in-vitro monitoring cell death. The system efficiently monitors cell death dynamics, being able to detect signals related to specific death mechanisms, namely necrosis or early/late apoptosis, demonstrating a reproducible correlation between the OECT electrical response and the trends of standard cell death assays. The innovative design of the Twell-OECT system has been modeled to better correlate electrical signals with cell death dynamics.
View Article and Find Full Text PDFThe capability of efficiently injecting charge carriers into organic films and finely tuning their morphology and structure is crucial to improve the performance of organic thin film transistors (OTFTs). In this work, we investigate OTFTs employing carbon nanotubes (CNTs) as the source-drain electrodes and, as the organic semiconductor, thin films of titanyl phthalocyanine (TiOPc) grown by supersonic molecular beam deposition (SuMBD). While CNT electrodes have shown an unprecedented ability to improve charge injection in OTFTs, SuMBD is an effective technique to tune film morphology and structure.
View Article and Find Full Text PDFSelective detection of bioanalytes in physiological fluids, such as blood, sweat or saliva, by means of low-cost and non-invasive devices, is of crucial importance to improve diagnosis and prevention in healthcare. To be really useful in everyday life a sensing system needs to be handy, non-invasive, easy to read and possibly wearable. Only a sensor that satisfies these requirements could be eligible for applications in healthcare and physiological condition monitoring.
View Article and Find Full Text PDFStudying highly energetic pentacene impinging on a surface, we demonstrated that the perpendicular component of the momentum drives the dynamics of molecule-molecule interactions and hence the island nucleation process, while the parallel component governs the dynamics of the interactions between the surface and the molecule and therefore determines the sticking coefficient and the island fractality.
View Article and Find Full Text PDFIn this work we have grown particular zinc oxide two-dimensional nanostructures which are essentially a series of hexagonal very thin sheets. The hexagonal wurtzite crystal structure gives them their peculiar shape, whose dimensions are few microns wide, with a thickness in the order of 25 nm. Such kind of nanostructure, grown by thermal oxidation of evaporated metallic zinc on a silica substrate, has been used to fabricate conductometric gas sensors, investigated then for hydrogen gas detection.
View Article and Find Full Text PDFSuperhydrophobic surfaces are bioinspired, nanotechnology artifacts, which feature a reduced friction coefficient, whereby they can be used for a number of very practical applications including, on the medical side, the manipulation of biological solutions. In this work, we integrated superhydrophobic patterns with the conducting polymer PEDOT:PSS, one of the most used polymers in organic electronics because highly sensitive to ionized species in solution. In doing so, we combined geometry and materials science to obtain an advanced device where, on account of the superhydrophobicity of the system, the solutions of interest can be manipulated and, on account of the conductive PEDOT:PSS polymer, the charged molecules dispersed inside can be quantitatively measured.
View Article and Find Full Text PDFOrganic electrochemical transistors (OECTs) are currently emerging as powerful tools for biosensing, bioelectronics and nanomedical applications owing to their ability to operate under liquid phase conditions optimally integrating electronic and biological systems. Herein we disclose the unique potential of OECTs for detecting and investigating the electrical properties of insoluble eumelanin biopolymers. Gate current measurements on fine aqueous suspensions of a synthetic eumelanin sample from 5,6-dihydroxyindole (DHI) revealed a well detectable hysteretic response similar to that of the pure monomer in solution, with the formal concentration of the polymer as low as 10 M.
View Article and Find Full Text PDFPhthalocyanine (H2Pc) and its open-shell copper complex (CuPc) deposited on amorphous gold films have been studied by combining the outcomes of several synchrotron based spectroscopic tools (X-ray photoelectron spectroscopy, UV photoelectron spectroscopy and near-edge X-ray absorption fine structure, NEXAFS, spectroscopy) with those of density functional theory (DFT) calculations. The assignment of experimental evidence has been guided by the results of DFT numerical experiments carried out on isolated molecules. With specific reference to CuPc NEXAFS data collected at the N K-edge, they have been assigned by using the open-shell time-dependent DFT (TDDFT) in the framework of the zeroth order regular approximation (ZORA) scalar relativistic approach.
View Article and Find Full Text PDF