Publications by authors named "Salvatore Cito"

In the wake of the COVID-19 pandemic, interest in understanding the turbulent dispersion of airborne pathogen-laden particles has significantly increased. The ability of infectious particles to stay afloat and disperse in indoor environments depends on their size, the environmental conditions and the hydrodynamics of the flow generated by the exhalation. In this work we analyze the impact of three different aspects, namely, the buoyancy force, the upper airways geometry and the head rotation during the exhalation on the short-term dispersion.

View Article and Find Full Text PDF

Purpose: Image-based computational fluid dynamics (CFD) is widely used to predict intracranial aneurysm wall shear stress (WSS), particularly with the goal of improving rupture risk assessment. Nevertheless, concern has been expressed over the variability of predicted WSS and inconsistent associations with rupture. Previous challenges, and studies from individual groups, have focused on individual aspects of the image-based CFD pipeline.

View Article and Find Full Text PDF

Purpose: Advanced morphology analysis and image-based hemodynamic simulations are increasingly used to assess the rupture risk of intracranial aneurysms (IAs). However, the accuracy of those results strongly depends on the quality of the vessel wall segmentation.

Methods: To evaluate state-of-the-art segmentation approaches, the Multiple Aneurysms AnaTomy CHallenge (MATCH) was announced.

View Article and Find Full Text PDF

Although a number of techniques exist for generating structured organic nanocomposites, it is still challenging to fabricate them in a controllable, yet universal and scalable manner. In this work, a microfluidic platform, exploiting superfast (milliseconds) time intervals between sequential nanoprecipitation processes, has been developed for high-throughput production of structured core/shell nanocomposites. The extremely short time interval between the sequential nanoprecipitation processes, facilitated by the multiplexed microfluidic design, allows us to solve the instability issues of nanocomposite cores without using any stabilizers.

View Article and Find Full Text PDF

With the increased availability of computational resources, the past decade has seen a rise in the use of computational fluid dynamics (CFD) for medical applications. There has been an increase in the application of CFD to attempt to predict the rupture of intracranial aneurysms, however, while many hemodynamic parameters can be obtained from these computations, to date, no consistent methodology for the prediction of the rupture has been identified. One particular challenge to CFD is that many factors contribute to its accuracy; the mesh resolution and spatial/temporal discretization can alone contribute to a variation in accuracy.

View Article and Find Full Text PDF

Thrombus formation is a multiscale phenomenon triggered by platelet deposition over a protrombotic surface (eg. a ruptured atherosclerotic plaque). Despite the medical urgency for computational tools that aid in the early diagnosis of thrombotic events, the integration of computational models of thrombus formation at different scales requires a comprehensive understanding of the role and limitation of each modelling approach.

View Article and Find Full Text PDF

Herein, we report the production of monodisperse hollow microparticles from three different polymers, namely, pH-responsive acetylated dextran and hypromellose acetate succinate and biodegradable poly(lactic-co-glycolic acid), at varying polymer concentrations using a poly(dimethylsiloxane)-based microfluidic device. Hollow microparticles formed during solvent diffusion into the continuous phase when the polymer close to the interface solidified, forming the shell. In the inner part of the particle, phase separation induced solvent droplet formation, which dissolved the shell, forming a hole and a hollow-core particle.

View Article and Find Full Text PDF

A versatile and robust microfluidic nanoprecipitation platform for high throughput synthesis of nanoparticles is fabricated. The versatility of this platform is proven through the successful preparation of different types of nanoparticles. This platform presents great robustness, with homogeneous nanoparticles always being obtained, regardless of the formulation parameters.

View Article and Find Full Text PDF

Capillary-driven flow (CD-flow) in microchannels plays an important role in many microfluidic devices. These devices, the most popular being those based in lateral flow, are becoming increasingly used in health care and diagnostic applications. CD-flow can passively pump biological fluids as blood, serum or plasma, in microchannels and it can enhance the wall mass transfer by exploiting the convective effects of the flow behind the meniscus.

View Article and Find Full Text PDF

Stimulated by a recent controversy regarding pressure drops predicted in a giant aneurysm with a proximal stenosis, the present study sought to assess variability in the prediction of pressures and flow by a wide variety of research groups. In phase I, lumen geometry, flow rates, and fluid properties were specified, leaving each research group to choose their solver, discretization, and solution strategies. Variability was assessed by having each group interpolate their results onto a standardized mesh and centerline.

View Article and Find Full Text PDF

Hemodynamics applied to mechanobiology offers powerful means to predict thrombosis, and to understand the kinetics of thrombus formation on areas of vascular damage in blood flowing through the human circulatory system. Specifically, the advances in computational processing and the progress in modeling complex biological processes with spatio-temporal multi-scale methods have the potential to shift the way in which cardiovascular diseases are diagnosed and treated. This article systematically surveys the state of the art of macroscopic computational fluid dynamics (CFD) Computational fluid dynamics techniques for modeling thrombus formation, highlighting their strengths and weaknesses.

View Article and Find Full Text PDF

Cerebral aneurysms are abnormal focal dilatations of artery walls. The interest in virtual tools to help clinicians to value the effectiveness of different procedures for cerebral aneurysm treatment is constantly growing. This study is focused on the analysis of the influence of different stent deployment approaches on intra-aneurysmal haemodynamics using computational fluid dynamics (CFD).

View Article and Find Full Text PDF