Currently, biased agonism is at the center stage of drug development approaches. We analyzed effects of a battery of cannabinoids plus/minus cannabidiol (CBD) in four functional parameters (cAMP levels, phosphorylation of extracellular signal-regulated kinases (ERK1/2), β-arrestin recruitment and label-free/DMR) in HEK-293T cells expressing cannabinoid receptors, CB or CB, or CB-CB heteroreceptor complexes. In all cases two natural agonists plus two selective synthetic agonists were used.
View Article and Find Full Text PDFCannabigerol (CBG) is one of the major phytocannabinoids present in L. that is attracting pharmacological interest because it is non-psychotropic and is abundant in some industrial hemp varieties. The aim of this work was to investigate in parallel the binding properties of CBG to cannabinoid CB (CBR) and CB (CBR) receptors and the effects of the compound on agonist activation of those receptors and of CB-CB heteroreceptor complexes.
View Article and Find Full Text PDFBackground And Purpose: Phytocannabinoids are produced in Cannabis sativa L. in acidic form and are decarboxylated upon heating, processing and storage. While the biological effects of decarboxylated cannabinoids such as Δ -tetrahydrocannabinol have been extensively investigated, the bioactivity of Δ -tetahydrocannabinol acid (Δ -THCA) is largely unknown, despite its occurrence in different Cannabis preparations.
View Article and Find Full Text PDFA selection of seven phytocannabinoids representative of the major structural types of classic cannabinoids and their corresponding cannabivarins was investigated for in vivo topical anti-inflammatory activity in the Croton oil mouse ear dermatitis assay. Differences in the terpenoid moiety were far more important for anti-inflammatory activity than those at the C-3 alkyl residue, suggesting the involvement not only of cannabinoid receptors, but also of other inflammatory end-points targeted by phytocannabinoids.
View Article and Find Full Text PDF