In order to complete this set of three companion papers, in this last, we focus our attention on environmental monitoring by taking advantage of photonic technologies. After reporting on some configurations useful for high precision agriculture, we explore the problems connected with soil water content measurement and landslide early warning. Then, we concentrate on a new generation of seismic sensors useful in both terrestrial and under water contests.
View Article and Find Full Text PDFOur group, involving researchers from different universities in Campania, Italy, has been working for the last twenty years in the field of photonic sensors for safety and security in healthcare, industrial and environment applications. This is the first in a series of three companion papers. In this paper, we introduce the main concepts of the technologies employed for the realization of our photonic sensors.
View Article and Find Full Text PDFThe employability of photonics technology in the modern era's highly demanding and sophisticated domain of aerospace and submarines has been an appealing challenge for the scientific communities. In this paper, we review our main results achieved so far on the use of optical fiber sensors for safety and security in innovative aerospace and submarine applications. In particular, recent results of in-field applications of optical fiber sensors in aircraft monitoring, from a weight and balance analysis to vehicle Structural Health Monitoring (SHM) and Landing Gear (LG) monitoring, are presented and discussed.
View Article and Find Full Text PDFIn this work, we report on a novel approach for measuring the dose absorbed by the EBT3 Gafchromic™ films exposed to 1 MeV electron beam and 250 kV X-rays in the range 0.5-100 Gy. Although EBT3 is specifically designed to obtain best performance for applications where the maximum dose is less than 10 Gy, there are certain clinical applications requiring dose ranges well above this value.
View Article and Find Full Text PDFRadiochromic film dosimetry has been widely employed in most of the applications of radiation physics for over twenty years. This is due to a number of appealing features of radiochromic films, such as reliability, accuracy, ease of use and cost. However, current radiochromic film reading techniques, based on the use of commercial densitometers and scanners, provide values of dose only after the exposure of the films to radiation.
View Article and Find Full Text PDFIn this work, we report on the first demonstration of Lab on Fiber (LOF) dosimeter for ionizing radiation monitoring at ultra-high doses. The new dosimeter consists in a metallo-dielectric resonator at sub-wavelength scale supporting localized surface plasmon resonances realized on the optical fiber (OF) tip. The resonating structure involves two gold gratings separated by a templated dielectric layer of poly(methyl methacrylate) (PMMA).
View Article and Find Full Text PDFThis Letter deals with a feasibility analysis for the development of radiation-tolerant fiber-optic humidity sensors based on long-period grating (LPG) technology to be applied in high-energy physics (HEP) experiments currently running at the European Organization for Nuclear Research (CERN). In particular, here we propose a high-sensitivity LPG sensor coated with a finely tuned titanium dioxide (TiO₂) thin layer (~100 nm thick) through the solgel deposition method. Relative humidity (RH) monitoring in the range 0%-75% and at four different temperatures (in the range -10°C-25°C) was carried out to assess sensor performance in real operative conditions required in typical experiments running at CERN.
View Article and Find Full Text PDF