Publications by authors named "Salvador Rodriguez-Zaragoza"

Prosopis laevigata (mesquite; Fabaceae) forms fertility islands in soils of semi-arid lands where microbial diversity concentrates in response to the accumulation of resources in the soil beneath individual plants, promoting organic matter decomposition and nutrient cycling. This phenomenon provides suitable conditions for the proliferation of key edaphic elements such as fungi and mites. Mite-fungal interactions are central for our understanding of nutrient cycling processes in resource-limited arid food webs; yet, no information is available about fertility islands in semi-arid lands.

View Article and Find Full Text PDF

Primary production in terrestrial ecosystems is sustained by plants, microbiota, and fungi, which are the major organic matter providers in the root zone, setting in motion the soil food webs. Predators like soil amoebae voraciously feed on bacteria, fungi, and microbial eukaryotes releasing the nutrients sequestered in their biomass. Early food web setting up is crucial for seedling nutrition and its further development after establishment.

View Article and Find Full Text PDF

Biological nitrogen fixation is limited to several groups of prokaryotes, some of them reduce nitrogen as free-living nitrogen-fixing bacteria. Protozoa predation on these latter releases sequestered nitrogen that may enhance the formation of new bacterial biomass and possibly increase nitrogen fixation within soil microbial communities. We aim to evaluate the predation effect of Colpoda sp.

View Article and Find Full Text PDF

Balamuthia mandrillaris is a free living amoeba that can be isolated from soil. It is an emerging pathogen causing skin lesions as well as CNS involvement with a fatal outcome if untreated. Further, infections can sometimes can also appear in peripheral areas such as extremities (usually knee), or trunk.

View Article and Find Full Text PDF

Root exudation increases microbial activity, selecting bacterial and fungal communities that metabolize organic matter such as hydrocarbons. However, a strong contamination pulse of hydrocarbons around plant roots may reorganize the soil's microbial trophic structure toward amoebae feeding on bacteria. We conducted a microcosm experiment to elucidate the effect of Medicago sativa on the trophic structure of naked amoebae after a strong pulse of pollution (50,000 ppm of fuel oil no.

View Article and Find Full Text PDF

A field study was designed to examine the effect of desert shrubs on the dynamics of free-living amoebae in arid soil. Soil samples from 0- to 50-cm depths were collected at 10-cm intervals in each of the four seasons. The vertical distributions of the four main morphological types of amoebae, grouped according to their mobility, and of small flagellate populations were measured under the canopies of Hammada scoparia and Atriplex halimus, shrubs belonging to the chloride-absorbing xerohalophytes.

View Article and Find Full Text PDF