Publications by authors named "Salvador Martinez-Bartolome"

Enterotoxigenic Escherichia coli (ETEC) cause hundreds of millions of cases of infectious diarrhea annually, predominantly in children from low-middle income regions. Notably, in children, as well as volunteers challenged with ETEC, diarrheal severity is significantly increased in blood group A (bgA) individuals. EtpA, is a secreted glycoprotein adhesin that functions as a blood group A lectin to promote critical interactions between ETEC and blood group A glycans on intestinal epithelia for effective bacterial adhesion and toxin delivery.

View Article and Find Full Text PDF

Enterotoxigenic (ETEC) cause hundreds of millions of cases of infectious diarrhea annually, predominantly in children from low-middle income regions. Notably, in children, as well as human volunteers challenged with ETEC, diarrheal severity is significantly increased severity in blood group A (bgA) individuals. EtpA, is a secreted glycoprotein adhesin that functions as a blood group A lectin to promote critical interactions between ETEC and blood group A glycans on intestinal epithelia for effective bacterial adhesion and toxin delivery.

View Article and Find Full Text PDF
Article Synopsis
  • SARS-CoV-2, the virus responsible for COVID-19, infects human airway cells by binding its spike protein to the ACE2 receptor on those cells.
  • Researchers used advanced techniques to discover that the spike protein interacts with various host proteins, including laminin and thrombospondin, which could impact the virus's ability to infect cells.
  • The study found that specific proteins preferentially combined with the original D614 spike variant over the mutated G614 variant, suggesting that this could allow the virus to infect a wider range of cells beyond just those that express ACE2.
View Article and Find Full Text PDF

The nuclear envelope (NE) is a subdomain of the ER with prominent roles in nuclear organization, which are largely mediated by its distinctive protein composition. We developed methods to reveal low-abundance transmembrane (TM) proteins concentrated at the NE relative to the peripheral ER. Using label-free proteomics that compared isolated NEs with cytoplasmic membranes, we first identified proteins with apparent NE enrichment.

View Article and Find Full Text PDF

Traditional mass spectrometry-based glycoproteomic approaches have been widely used for site-specific N-glycoform analysis, but a large amount of starting material is needed to obtain sampling that is representative of the vast diversity of N-glycans on glycoproteins. These methods also often include a complicated workflow and very challenging data analysis. These limitations have prevented glycoproteomics from being adapted to high-throughput platforms, and the sensitivity of the analysis is currently inadequate for elucidating N-glycan heterogeneity in clinical samples.

View Article and Find Full Text PDF

The nuclear envelope (NE) is a subdomain of the ER with prominent roles in nuclear organization, largely mediated by its distinctive protein composition. We developed methods to reveal novel, low abundance transmembrane (TM) proteins concentrated at the NE relative to the peripheral ER. Using label-free proteomics that compared isolated NEs to cytoplasmic membranes, we first identified proteins with apparent NE enrichment.

View Article and Find Full Text PDF

Emerin and lamin B receptor (LBR) are abundant transmembrane proteins of the nuclear envelope that are concentrated at the inner nuclear membrane (INM). Although both proteins interact with chromatin and nuclear lamins, they have distinctive biochemical and functional properties. Here, we have deployed proximity labeling using the engineered biotin ligase TurboID (TbID) and quantitative proteomics to compare the neighborhoods of emerin and LBR in cultured mouse embryonic fibroblasts.

View Article and Find Full Text PDF

A single protein can be multifaceted depending on the cellular contexts and interacting molecules. LIN28A is an RNA-binding protein that governs developmental timing, cellular proliferation, differentiation, stem cell pluripotency, and metabolism. In addition to its best-known roles in microRNA biogenesis, diverse molecular roles have been recognized.

View Article and Find Full Text PDF

Viruses can evade the host immune system by displaying numerous glycans on their surface "spike-proteins" that cover immune epitopes. We have developed an ultrasensitive "single-pot" method to assess glycan occupancy and the extent of glycan processing from high-mannose to complex forms at each -glycosylation site. Though aimed at characterizing glycosylation of viral spike-proteins as potential vaccines, this method is applicable for the analysis of site-specific glycosylation of any glycoprotein.

View Article and Find Full Text PDF

Early-onset epileptic encephalopathies are severe disorders often associated with specific genetic mutations. In this context, the CDKL5 deficiency disorder (CDD) is a neurodevelopmental condition characterized by early-onset seizures, intellectual delay, and motor dysfunction. Although crucial for proper brain development, the precise targets of CDKL5 and its relation to patients' symptoms are still unknown.

View Article and Find Full Text PDF
Article Synopsis
  • Misfolding and aggregation of amyloid-β and hyperphosphorylated tau are key indicators of Alzheimer's disease, but current methods can't track protein folding throughout the entire proteome in AD.
  • The study introduces covalent protein painting (CPP), a mass spectrometry technique that measures how accessible specific lysine residues are on proteins, revealing changes in their structure in response to conditions like heat shock.
  • Analysis of human brain tissue indicates that the structural changes in proteins such as tubulin-β and succinate dehydrogenase in patients with neurodegenerative diseases suggest broader disruptions in protein structures beyond just amyloid-β and tau.
View Article and Find Full Text PDF

The SARS-CoV-2 virus causes severe acute respiratory syndrome (COVID-19) and has rapidly created a global pandemic. Patients that survive may face a slow recovery with long lasting side effects that can afflict different organs. SARS-CoV-2 primarily infects epithelial airway cells that express the host entry receptor Angiotensin Converting Enzyme 2 (ACE2) which binds to spike protein trimers on the surface of SARS-CoV-2 virions.

View Article and Find Full Text PDF

Accumulation of aggregated amyloid beta (Aβ) in the brain is believed to impair multiple cellular pathways and play a central role in Alzheimer's disease pathology. However, how this process is regulated remains unclear. In theory, measuring protein synthesis is the most direct way to evaluate a cell's response to stimuli, but to date, there have been few reliable methods to do this.

View Article and Find Full Text PDF

Protein degradation is an essential mechanism for maintaining proteostasis in response to internal and external perturbations. Disruption of this process is implicated in many human diseases. We present a new technique, QUAD (Quantification of Azidohomoalanine Degradation), to analyze the global degradation rates in tissues using a non-canonical amino acid and mass spectrometry.

View Article and Find Full Text PDF

Data-independent acquisition (DIA) is a promising technique for the proteomic analysis of complex protein samples. A number of studies have claimed that DIA experiments are more reproducible than data-dependent acquisition (DDA), but these claims are unsubstantiated since different data analysis methods are used in the two methods. Data analysis in most DIA workflows depends on spectral library searches, whereas DDA typically employs sequence database searches.

View Article and Find Full Text PDF

Mass spectrometry-based proteomics is an invaluable tool for addressing important biological questions. Data-dependent acquisition methods effectuate stochastic acquisition of data in complex mixtures, which results in missing identifications across replicates. We developed a search approach that improves the reproducibility of data acquired from any mass spectrometer.

View Article and Find Full Text PDF

Recent advances in genome editing technologies have enabled the insertion of epitope tags at endogenous loci with relative efficiency. We describe an approach for investigation of protein interaction dynamics of the AMP-activated kinase complex AMPK using a catalytic subunit AMPKα2 ( gene) as the bait, based on CRISPR/Cas9-mediated genome editing coupled to stable isotope labeling in cell culture, multidimensional protein identification technology, and computational and statistical analyses. Furthermore, we directly compare this genetic epitope tagging approach to endogenous immunoprecipitations of the same gene under homologous conditions to assess differences in observed interactors.

View Article and Find Full Text PDF

The characterization of complex biological systems based on high-throughput protein quantification through mass spectrometry commonly involves differential expression analysis between replicate samples originating from different experimental conditions. Here we present Proteomics INTegrator (PINT), a new user-friendly Web-based platform-independent system to store, visualize, and query proteomics experiment results. PINT provides an extremely flexible query interface that allows advanced Boolean algebra-based data filtering of many different proteomics features such as confidence values, abundance levels or ratios, data set overlaps, sample characteristics, as well as UniProtKB annotations, which are transparently incorporated into the system.

View Article and Find Full Text PDF

The double membrane nuclear envelope (NE), which is contiguous with the ER, contains nuclear pore complexes (NPCs) - the channels for nucleocytoplasmic transport, and the nuclear lamina (NL) - a scaffold for NE and chromatin organization. Since numerous human diseases linked to NE proteins occur in mesenchyme-derived cells, we used proteomics to characterize NE and other subcellular fractions isolated from mesenchymal stem cells and from adipocytes and myocytes. Based on spectral abundance, we calculated enrichment scores for proteins in the NE fractions.

View Article and Find Full Text PDF
Article Synopsis
  • Mammalian cells have various compartments that create specialized environments, enabling different biological processes to occur at the same time.
  • Proteins are directed to specific subcellular locations where they perform unique functions based on their compartment.
  • Spatial proteomics is a method used to identify and measure the location of proteins within these subcellular structures.
View Article and Find Full Text PDF

Kinases are a major clinical target for human diseases. Identifying the proteins that interact with kinases in vivo will provide information on unreported substrates and will potentially lead to more specific methods for therapeutic kinase regulation. Here, endogenous immunoprecipitations of evolutionally distinct kinases (i.

View Article and Find Full Text PDF

The human genome harbors just 20,000 genes suggesting that the variety of possible protein products per gene plays a significant role in generating functional diversity. In bottom-up proteomics peptides are mapped back to proteins and proteoforms to describe a proteome; however, accurate quantitation of proteoforms is challenging due to incomplete protein sequence coverage and mapping ambiguities. Here, we demonstrate that a new software tool called ProteinClusterQuant (PCQ) can be used to deduce the presence of proteoforms that would have otherwise been missed, as exemplified in a proteomic comparison of two fly species, Drosophila melanogaster and D.

View Article and Find Full Text PDF

Mass-spectrometry-based proteomics has evolved into a high-throughput technology in which numerous large-scale data sets are generated from diverse analytical platforms. Furthermore, several scientific journals and funding agencies have emphasized the storage of proteomics data in public repositories to facilitate its evaluation, inspection, and reanalysis. (1) As a consequence, public proteomics data repositories are growing rapidly.

View Article and Find Full Text PDF

Cellular proteomes are thought to be optimized for function, leaving no room for proteome plasticity and, thus, evolution. However, hybrid animals that result from a viable cross of two different species harbor hybrid proteomes of unknown complexity. We charted the hybrid proteome of a viable cross between females and males with bottom-up proteomics.

View Article and Find Full Text PDF

Amyloid beta (Aβ) peptides impair multiple cellular pathways and play a causative role in Alzheimer's disease (AD) pathology, but how the brain proteome is remodeled by this process is unknown. To identify protein networks associated with AD-like pathology, we performed global quantitative proteomic analysis in three mouse models at young and old ages. Our analysis revealed a robust increase in Apolipoprotein E (ApoE) levels in nearly all brain regions with increased Aβ levels.

View Article and Find Full Text PDF