Publications by authors named "Salvador Ibarra-Delgado"

Managing Multi-Processor Systems-on-Chip (MPSoCs) is becoming increasingly complex as demands for advanced capabilities rise. This complexity is due to the involvement of more processing elements and resources, leading to a higher degree of heterogeneity throughout the system. Over time, management schemes have evolved from simple to autonomous systems with continuous control and monitoring of various parameters such as power distribution, thermal events, fault tolerance, and system security.

View Article and Find Full Text PDF

Current computing platforms encourage the integration of thousands of processing cores, and their interconnections, into a single chip. Mobile smartphones, IoT, embedded devices, desktops, and data centers use Many-Core Systems-on-Chip (SoCs) to exploit their compute power and parallelism to meet the dynamic workload requirements. Networks-on-Chip (NoCs) lead to scalable connectivity for diverse applications with distinct traffic patterns and data dependencies.

View Article and Find Full Text PDF

Current System-on-Chips (SoCs) execute applications with task dependency that compete for shared resources such as buses, memories, and accelerators. In such a structure, the arbitration policy becomes a critical part of the system to guarantee access and bandwidth suitable for the competing applications. Some strategies proposed in the literature to cope with these issues are Round-Robin, Weighted Round-Robin, Lottery, Time Division Access Multiplexing (TDMA), and combinations.

View Article and Find Full Text PDF